@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 38
4. Uchburchakning uchlari toʻgʻri burchakli dekart koordinatalar sistemasida
quyidagicha berilgan:
𝑨(𝟎; 𝟎), 𝑩(−𝟏; 𝟓), 𝑪(−𝟐; 𝟎)
. Uchburchak yuzini toping.
2) 𝑥
1
= −1 ; 𝑦
1
= 5 ; 𝑥
2
= −2 ; 𝑦
2
= 0 .
𝐵𝐶 = √(𝑥
2
− 𝑥
1
)
2
+ (𝑦
2
− 𝑦
1
)
2
= √((−2) − (−1))
2
+ (0 − 5)
2
=
= √(−2 + 1)
2
+ (−5)
2
= √1 + 25 = √26 . 𝐴𝐵 = 𝐵𝐶 = √26 ; ∆𝐴𝐵𝐶 𝑡𝑒𝑛𝑔 𝑦𝑜𝑛𝑙𝑖
1) 𝑥
1
= 0 ; 𝑦
1
= 0 ; 𝑥
2
= −2 ; 𝑦
2
= 0 .
𝐴𝐶 = √(𝑥
2
− 𝑥
1
)
2
+ (𝑦
2
− 𝑦
1
)
2
= √(−2 − 0)
2
+ (0 − 0)
2
= √4 + 0 = √4 = 2 .
𝐴𝐷 =
𝐴𝐶
2
=
2
2
= 1 ; 𝐵𝐷 = √𝐴𝐵
2
− 𝐴𝐷
2
= √(√26)
2
− 1
2
= √25 = 5 ;
𝑆
𝐴𝐵𝐶
=
1
2
∙ 𝐴𝐶 ∙ 𝐵𝐷 =
1
2
∙ 2 ∙ 5 =
10
2
= 5 . 𝐽𝑎𝑣𝑜𝑏: 𝑆
𝐴𝐵𝐶
= 5 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) .
5. Qirrasi
√𝟐 + 𝟏
boʻlgan kubdan uchlari kub uchlarida boʻlgan sakkizta
muntazam piramidalar shunday kesib olindiki, qolgan jismning sirti sakkizta
muntazam sakkizburchak va sakkizta muntazam uchburchaklardan iborat.
Hosil boʻlgan jism hajmini toping.
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐴(0; 0), 𝐵(−1; 5), 𝐶(−2; 0).
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑆
𝐴𝐵𝐶
=?
1) 𝑥
1
= 0 ; 𝑦
1
= 0 ; 𝑥
2
= −1 ; 𝑦
2
= 5 .
𝐴𝐵 = √(𝑥
2
− 𝑥
1
)
2
+ (𝑦
2
− 𝑦
1
)
2
=
= √(−1 − 0)
2
+ (5 − 0)
2
= √1 + 25 = √26 .
𝐾𝑢𝑏𝑛𝑖𝑛𝑔 8 𝑡𝑎 𝑢𝑐ℎ𝑖𝑑𝑎𝑔𝑖 𝑞𝑖𝑟𝑟𝑎𝑠𝑖
𝑎
2
𝑔𝑎 𝑡𝑒𝑛𝑔
𝑝𝑖𝑟𝑎𝑚𝑖𝑑𝑎𝑙𝑎𝑟𝑛𝑖𝑛𝑔 ℎ𝑎𝑗𝑚𝑖 𝑦𝑖𝑔‘𝑖𝑛𝑑𝑖𝑠𝑖𝑛𝑖 𝑘𝑢𝑏 ℎ𝑎𝑗𝑚𝑖𝑑𝑎𝑛
𝑎𝑦𝑖𝑟𝑎𝑚𝑖𝑧. 𝑎 = √2 + 1 ; 𝑉
𝑘𝑢𝑏
= 𝑎
3
;
𝑉
1 𝑝𝑖𝑟𝑎𝑚𝑖𝑑𝑎
=
1
3
∙ (
𝑎
2
)
3
=
𝑎
3
24
;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 39
8 ∙ 𝑉
1 𝑝𝑖𝑟𝑎𝑚𝑖𝑑𝑎
= 8 ∙
𝑎
3
24
=
𝑎
3
3
; 𝑉
𝑗𝑖𝑠𝑚
= 𝑉
𝑘𝑢𝑏
− 8 ∙ 𝑉
1 𝑝𝑖𝑟𝑎𝑚𝑖𝑑𝑎
= 𝑎
3
−
𝑎
3
3
=
=
3𝑎
3
− 𝑎
3
3
=
2𝑎
3
3
=
2
3
∙ (√2 + 1)
3
=
2
3
∙ (2√2 + 3 ∙ (√2)
2
∙ 1 + 3√2 ∙ 1
2
+ 1
3
) =
=
2
3
∙ (2√2 + 3 ∙ 2 + 3√2 + 1) =
2
3
∙ (5√2 + 7) =
10√2 + 14
3
.
𝐽𝑎𝑣𝑜𝑏: 𝑉
𝑗𝑖𝑠𝑚
=
10√2 + 14
3
.
19-BILET
1. Moddiy nuqta
𝒔(𝒕) = 𝒕
𝟐
+ 𝟑𝒕
qonun boʻyicha harakatlanyapti. Vaqtning
qaysi paytida nuqtaning harakat tezligi
𝟏𝟓
𝒎
𝒔
ga teng boʻladi?
𝑣(𝑡) = 15
𝑚
𝑠
; 𝑠′(𝑡) = (𝑡
2
+ 3𝑡)
′
= 2𝑡 + 3 ; 2𝑡 + 3 = 𝑣(𝑡); 2𝑡 + 3 = 15 ;
2𝑡 = 15 − 3 ; 2𝑡 = 12 ; 𝑡 =
12
2
; 𝑡 = 6 𝑠 . 𝐽𝑎𝑣𝑜𝑏: 𝑡 = 6 𝑠 .
2. Tenglamani yeching:
𝟑 ∙ 𝒕𝒈
𝟐
𝒙 − 𝟒 ∙ 𝒕𝒈𝒙 + 𝟏 = 𝟎 .
𝑡𝑔𝑥 = 𝑦 ; 3𝑦
2
− 4𝑦 + 1 = 0 ; 3𝑦
2
− 3𝑦 − 𝑦 + 1 = 0 ;
3𝑦(𝑦 − 1) − (𝑦 − 1) = 0 ; (3𝑦 − 1)(𝑦 − 1) = 0 ; {
3𝑦 − 1 = 0
𝑦 − 1 = 0
→
→ {
3𝑦 = 1
𝑦 = 1
→ {
𝑦 =
1
3
𝑦 = 1
→ {
𝑡𝑔 𝑥 =
1
3
𝑡𝑔 𝑥 = 1
→ {
𝑥 = 𝑎𝑟𝑐𝑡𝑔
1
3
+ 𝜋𝑘, 𝑘𝜖𝑍
𝑥 =
𝜋
4
+ 𝜋𝑘, 𝑘𝜖𝑍
𝐽𝑎𝑣𝑜𝑏: 𝑥
1
= 𝑎𝑟𝑐𝑡𝑔
1
3
+ 𝜋𝑘, 𝑘𝜖𝑍 ; 𝑥
2
=
𝜋
4
+ 𝜋𝑘, 𝑘𝜖𝑍 .
3. Hisoblang:
𝐥𝐨𝐠
𝟕
𝟏𝟒−
𝟏
𝟑
∙ 𝐥𝐨𝐠
𝟕
𝟓𝟔
𝐥𝐨𝐠
𝟔
𝟑𝟎−
𝟏
𝟐
∙ 𝐥𝐨𝐠
𝟔
𝟏𝟓𝟎
log
7
14 −
1
3
∙ log
7
56
log
6
30 −
1
2
∙ log
6
150
=
log
7
(2 ∙ 7) −
1
3
∙ log
7
(8 ∙ 7)
log
6
(5 ∙ 6) −
1
2
∙ log
6
(25 ∙ 6)
=
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 42
4. Oʻnsakkizburchakning yuzi
𝟒
ga, unga ichki chizilgan doiraning yuzi
ga teng.
Oʻnsakkizburchakning perimetrini toping.
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑆
18
= 4 ; 𝑆
𝑑𝑜𝑖𝑟𝑎
= 𝜋 . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑃
18
=?
𝑆
𝑑𝑜𝑖𝑟𝑎
= 𝜋 ; 𝑆
𝑑𝑜𝑖𝑟𝑎
= 𝜋𝑟
2
; 𝜋 = 𝜋𝑟
2
; 𝑟
2
=
𝜋
𝜋
; 𝑟
2
= 1 ; 𝑟 = 1 ;
𝑆
18
=
1
2
∙ 𝑃
18
∙ 𝑟 ; 4 =
1
2
∙ 𝑃
18
∙ 1 ; 𝑃
18
= 4 ∙ 2 = 8 . 𝐽𝑎𝑣𝑜𝑏: 𝑃
18
= 8 .
5. Konus balandligi va yasovchining uzunliklari
𝟒 ∶ 𝟓
kabi nisbatda, hajmi esa
𝟗𝟔
ga teng. Toʻla sirtini toping.
1
3
𝜋𝑅
2
ℎ = 𝑉 ;
1
3
∙ 𝜋 ∙ (3𝑥)
2
∙ 4𝑥 = 96𝜋 ;
1
3
∙ 9𝑥
2
∙ 4𝑥 = 96 ;
12𝑥
3
= 96 ; 𝑥
3
=
96
12
; 𝑥
3
= 8 ; 𝑥
3
= 2
3
; 𝑥 = 2 ;
ℎ = 4𝑥 = 4 ∙ 2 = 8 ; 𝑙 = 5𝑥 = 5 ∙ 2 = 10 ; 𝑅 = 3𝑥 = 3 ∙ 2 = 6 ;
𝑆
𝑦𝑜𝑛
= 𝜋 ∙ 𝑅 ∙ 𝑙 = 𝜋 ∙ 6 ∙ 10 = 60𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) ;
𝑆
𝑎𝑠𝑜𝑠
= 𝜋 ∙ 𝑅
2
= 𝜋 ∙ 6
2
= 36𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) ;
𝑆
𝑡𝑜‘𝑙𝑎
= 𝑆
𝑎𝑠𝑜𝑠
+ 𝑆
𝑦𝑜𝑛
= 36𝜋 + 60𝜋 = 96𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) .
𝐽𝑎𝑣𝑜𝑏: 𝑆
𝑡𝑜‘𝑙𝑎
= 96𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) .
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: ℎ = 𝑆𝑂 = 4𝑥 ; 𝑙 = 𝑆𝐴 = 5𝑥 ; 𝑉 = 96𝜋 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑆
𝑡𝑜‘𝑙𝑎
=?
𝑅 = 𝐴𝑂 = √𝑙
2
− ℎ
2
= √(5𝑥)
2
− (4𝑥)
2
=
= √25𝑥
2
− 16𝑥
2
= √9𝑥
2
= 3𝑥 ; 𝑅 = 3𝑥 ;