@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 16
→ {
𝑀
1
= 𝑥 − 2 = 1 − 2 = −1 ; 𝑀
1
< 0
𝑀
2
= √𝑥 − 4 = √5 − 4 = √1 = 1 ; 𝑀
2
> 0
→ 𝑥 = 5 . 𝐽𝑎𝑣𝑜𝑏: 𝑥 = 5 .
4. Diagonali yon tomoniga perpendikulyar boʻlgan trapetsiyaga radiusi
𝟔
ga
teng boʻlgan aylana tashqi chizilgan. Agar trapetsiyaning kichik asosi
𝟒
ga teng
boʻlsa, uning yuzini toping.
𝐸𝑂 = 𝐴𝑂 − 𝐴𝐸 = 6 − 4 = 2 ; 𝐵𝐸
2
+ 𝐸𝑂
2
= 𝐵𝑂
2
; ℎ
2
+ 2
2
= 6
2
;
ℎ = √6
2
− 2
2
= √36 − 4 = √32 = √16 ∙ 2 = 4√2 ;
𝑆
𝐴𝐵𝐶𝐷
=
𝐴𝐷 + 𝐵𝐶
2
∙ ℎ =
12 + 4
2
∙ 4√2 =
16
2
∙ 4√2 = 8 ∙ 4√2 = 32√2 .
𝐽𝑎𝑣𝑜𝑏: 𝑆
𝐴𝐵𝐶𝐷
= 32√2 (𝑘𝑣. 𝑏𝑖𝑟𝑙𝑖𝑘).
5. Muntazam oktaedrning ikki uchi orasidagi masofa
𝟏𝟖
ga teng. Shu oktaedr
hajmini toping.
∠𝐴𝐸𝐶 = 90° ; ∠𝐴𝐸𝑂 = ∠𝐶𝐸𝑂 =
∠𝐴𝐸𝐶
2
=
90°
2
= 45° ;
𝐴𝑂
𝐴𝐸
= sin ∠𝐴𝐸𝑂 ;
𝑅
𝑎
= sin 45° ;
𝑅
𝑎
=
√2
2
; 𝑎 ∙ √2 = 2 ∙ 𝑅 ; 𝑎 =
2𝑅
√2
=
2 ∙ 9
√2
= 9√2 ;
𝑉 =
𝑎
3
∙ √2
3
=
(9√2)
3
∙ √2
3
=
729 ∙ 2√2 ∙ √2
3
= 243 ∙ 4 = 972 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐽𝑎𝑣𝑜𝑏: 𝑉 = 972 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐴𝐵 ⊥ 𝐵𝐷 ; 𝑅 = 6 ; 𝐵𝐶 = 4 . 𝑆
𝐴𝐵𝐶𝐷
=?
𝐴𝐷 = 2𝑅 = 2 ∙ 6 = 12 ; 𝑅 = 𝐴𝑂 = 𝐷𝑂 = 𝐵𝑂 = 6 ;
𝐴𝐸 =
𝐴𝐷 − 𝐵𝐶
2
=
12 − 4
2
=
8
2
= 4 ;
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑑 = 𝐴𝐶 = 𝐵𝐷 = 𝐸𝐹 = 18 ; 𝑉 =?
𝑅 = 𝐴𝑂 = 𝑂𝐵 = 𝑂𝐶 = 𝑂𝐷 = 𝑂𝐸 = 𝑂𝐹 =
𝑑
2
=
18
2
= 9 ;
𝑎 = 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 = 𝐴𝐷 = 𝐴𝐸 = 𝐵𝐸 = 𝐶𝐸 = 𝐷𝐸 =
= 𝐴𝐹 = 𝐵𝐹 = 𝐶𝐹 = 𝐷𝐹 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 17
8–BILET
1.
𝟒
𝒙−𝟑
= (𝟐√𝟐)
𝟑𝒙−𝟓
𝟑
tenglamani yeching.
4
𝑥−3
= (2√2)
3𝑥−5
3
; (2
2
)
𝑥−3
= (2
1
∙ 2
1
2
)
3𝑥−5
3
; 2
2𝑥−6
= (2
1+
1
2
)
3𝑥−5
3
;
2
2𝑥−6
= (2
3
2
)
3𝑥−5
3
; 2
2𝑥−6
= 2
9𝑥−15
6
; 2𝑥 − 6 =
9𝑥 − 15
6
;
6 ∙ (2𝑥 − 6) = 9𝑥 − 15 ; 12𝑥 − 36 = 9𝑥 − 15 ; 12𝑥 − 9𝑥 = 36 − 15 ;
3𝑥 = 21 ; 𝑥 =
21
3
; 𝑥 = 7 . 𝐽𝑎𝑣𝑜𝑏: 𝑥 = 7 .
2.
𝒇(𝒙) = 𝟐 + 𝟔 ∙ 𝐜𝐨𝐬
𝟐
(𝟐𝒙 + 𝟐)
funksiyaning qiymatlar toʻplamini toping.
0 ≤ cos
2
(2𝑥 + 2) ≤ 1 ; 0 ∙ 6 ≤ 6 ∙ cos
2
(2𝑥 + 2) ≤ 1 ∙ 6 ;
0 ≤ 6 ∙ cos
2
(2𝑥 + 2) ≤ 6 ; 0 + 2 ≤ 2 + 6 ∙ cos
2
(2𝑥 + 2) ≤ 6 + 2 ;
2 ≤ 2 + 6 ∙ cos
2
(2𝑥 + 2) ≤ 8 ; 2 ≤ 𝑓(𝑥) ≤ 8. 𝐽𝑎𝑣𝑜𝑏: [ 2 ; 8 ] .
3.
𝒇(𝒙) =
𝟐𝒙+𝟓
𝒙+𝟏
funksiga
𝒙
𝟎
= 𝟐
nuqtada oʻtkazilgan urinma tenglamasini
yozing.
𝑓(𝑥) =
2𝑥 + 5
𝑥 + 1
; 𝑥
0
= 2 ; 𝑓(𝑥
0
) = 𝑓(2) =
2 ∙ 2 + 5
2 + 1
=
4 + 5
3
=
9
3
= 3 ;
𝑓
′
(𝑥) = (
2𝑥 + 5
𝑥 + 1
)
′
=
(2𝑥 + 5)
′
∙ (𝑥 + 1) − (2𝑥 + 5) ∙ (𝑥 + 1)
′
(𝑥 + 1)
2
=
=
2(𝑥 + 1) − 2𝑥 − 5
(𝑥 + 1)
2
=
2𝑥 + 2 − 2𝑥 − 5
(𝑥 + 1)
2
=
−3
(𝑥 + 1)
2
= −
3
(𝑥 + 1)
2
;
𝑓
′
(2) = −
3
(2 + 1)
2
= −
3
3
2
= −
3
9
= −
1
3
;
𝒚 − 𝒇(𝒙
𝟎
) = 𝒇
′
(𝒙
𝟎
) ∙ (𝒙 − 𝒙
𝟎
) ; 𝑦 − 3 = (−
1
3
) ∙ (𝑥 − 2) ;
𝑦 = 3 −
1
3
∙ (𝑥 − 2) = 3 −
𝑥 − 2
3
=
9 − 𝑥 + 2
3
=
−𝑥 + 11
3
𝐽𝑎𝑣𝑜𝑏: 𝑦 =
−𝑥 + 11
3
.
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 18
4. Toʻgʻri burchakli uchburchakning gipotenuzasi
𝟗 𝒄𝒎
. Agar unga ichki
chizilgan aylananing radiusi
𝟓 𝒄𝒎
boʻlsa, uchburchakning perimetrini toping.
𝑃 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 = 𝐴𝐵 + (𝐵𝐹 + 𝐹𝐶) + (𝐴𝐷 + 𝐷𝐶) =
= 9 + (9 − 𝑥 + 5) + (𝑥 + 5) = 9 + 14 − 𝑥 + 𝑥 + 5 = 9 + 14 + 5 = 28 𝑐𝑚 .
𝐽𝑎𝑣𝑜𝑏: 𝑃 = 28 𝑐𝑚 .
5. Yon sirti
𝟔𝟎 𝒄𝒎
𝟐
boʻlgan piramidaga radiusi
𝟑 𝒄𝒎
boʻlgan shar ichki
chizilgan. Piramida hajmini toping.
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: ∠𝐶 = 90° ; 𝐴𝐵 = 9 𝑐𝑚 ; 𝑟 = 5 𝑐𝑚 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑃 =?
𝐴𝐸 = 𝐴𝐷 = 𝑥 𝑐𝑚 ; 𝐸𝐵 = 𝐵𝐹 = 9 − 𝑥 𝑐𝑚 ;
𝑟 = 𝐷𝐶 = 𝐹𝐶 = 5 𝑐𝑚 ;
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑆
𝑦𝑜𝑛
= 60 𝑐𝑚
2
; 𝑟 = 3 𝑠𝑚 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑉
𝑝𝑖𝑟𝑎𝑚𝑖𝑑𝑎
=?
∆𝐴𝐵𝑆 = ∆𝐵𝐶𝑆 = ∆𝐴𝐶𝑆 = ∆𝐴𝐵𝐶 ;
𝑆
𝐴𝐵𝐶
=
𝑆
𝑦𝑜𝑛
3
=
60 𝑐𝑚
2
3
= 20 𝑐𝑚
2
;
𝑆
𝑡𝑜‘𝑙𝑎
= 𝑆
𝑦𝑜𝑛
+ 𝑆
𝐴𝐵𝐶
= 60 𝑐𝑚
2
+ 20 𝑐𝑚
2
=
= 80 𝑐𝑚
2
.
𝑉 =
𝑆
𝑡𝑜‘𝑙𝑎
∙ 𝑟
3
=
80 𝑐𝑚
2
∙ 3 𝑐𝑚
3
= 80 𝑐𝑚
3
.
𝐽𝑎𝑣𝑜𝑏: 𝑉 = 80 𝑐𝑚
3
.
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 19
9–BILET
1. Arifmetik progressiyada
𝑺
𝟏𝟎
= 𝟏𝟕𝟓, 𝑺
𝟐𝟎
= 𝟑𝟐𝟓
boʻlsa,
𝑺
𝟑𝟎
ni toping.
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑆
10
= 175, 𝑆
20
= 325 . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘 ∶ 𝑆
30
=?
{
2𝑎
1
+ 9𝑑
2
∙ 10 = 175
2𝑎
1
+ 19𝑑
2
∙ 20 = 325
→ {
(2𝑎
1
+ 9𝑑) ∙ 5 = 175
(2𝑎
1
+ 19𝑑) ∙ 10 = 325
→ {
2𝑎
1
+ 9𝑑 =
175
5
2𝑎
1
+ 19𝑑 =
325
10
→
→ {
2𝑎
1
+ 9𝑑 = 35
2𝑎
1
+ 19𝑑 = 32,5
→ 2𝑎
1
+ 9𝑑 − 2𝑎
1
− 19𝑑 = 35 − 32,5 ;
−10𝑑 = 2,5; 𝒅 = −𝟎, 𝟐𝟓 ; 2𝑎
1
+ 9𝑑 = 35 ; 2𝑎
1
+ 9 ∙ (−0,25) = 35 ;
2𝑎
1
− 2,25 = 35 ; 2𝑎
1
= 35 + 2,25 ; 2𝑎
1
= 37,25 ; 𝒂
𝟏
= 𝟏𝟖, 𝟔𝟐𝟓 ;
𝑎
30
= 𝑎
1
+ 29𝑑 = 18,625 + 29 ∙ (−0,25) = 18,625 − 7,25 = 11,375 ;
𝑆
30
=
2𝑎
1
+ 29𝑑
2
∙ 30 =
2 ∙ 18,625 + 29 ∙ (−0,25)
2
∙ 30 = (37,25 − 7,25) ∙ 15 =
= 30 ∙ 15 = 450 . 𝐽𝑎𝑣𝑜𝑏: 𝑆
30
= 450 .
Do'stlaringiz bilan baham: