@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 44
4. Muntazam uchburchak yuzi
𝟐𝟓√𝟑
ga teng. Shu uchburchakdan eng katta
yuzaga ega boʻlgan kvadrat qirqib olingan. Kvadratning perimetrini toping.
=
𝑎
2
√3 =
10
2
∙ √3 = 5√3 ; 𝑏 − 𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑡𝑜𝑚𝑜𝑛𝑖
5√3 − 𝑏
𝑏
=
𝑏
2
5 −
𝑏
2
;
5√3 − 𝑏
𝑏
=
𝑏
10 − 𝑏
; 𝑏 ∙ 𝑏 = (5√3 − 𝑏) ∙ (10 − 𝑏) ;
𝑏
2
= 50√3 − 10𝑏 − 5√3 ∙ 𝑏 + 𝑏
2
; 50√3 − 10𝑏 − 5√3 ∙ 𝑏 = 0 ;
10√3 − 2𝑏 − √3 ∙ 𝑏 = 0 ; 10√3 − (2 + √3) ∙ 𝑏 = 0 ; (2 + √3) ∙ 𝑏 = 10√3 ;
𝑏 =
10√3
2 + √3
=
10√3 ∙ (2 − √3)
(2 + √3) ∙ (2 − √3)
=
10√3 ∙ (2 − √3)
4 − 3
= 10√3 ∙ (2 − √3) =
= 20√3 − 30 . 𝑃
𝐷𝐸𝐹𝐾
= 4𝑎 = 4 ∙ (20√3 − 30) = 80√3 − 120 (𝑏𝑖𝑟𝑙𝑖𝑘).
𝐽𝑎𝑣𝑜𝑏: 𝑃
𝐷𝐸𝐹𝐾
= 80√3 − 120 (𝑏𝑖𝑟𝑙𝑖𝑘).
5. Silindr yon sirtining yuzi
𝟐𝟒𝝅
ga, hajmi esa
𝟒𝟖𝝅
ga teng. Silindrning
balandligini toping.
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑎 = 𝐴𝐵 = 𝐵𝐶 = 𝐴𝐶 ;
𝑏 = 𝐷𝐸 = 𝐸𝐹 = 𝐹𝐾 = 𝐷𝐾 ; 𝑆
𝐴𝐵𝐶
= 25√3 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑃
𝐷𝐸𝐹𝐾
=?
𝑎
2
∙ √3
4
= 𝑆
𝐴𝐵𝐶
;
𝑎
2
∙ √3
4
= 25√3 ;
𝑎
2
∙ √3 = 100√3 𝑎
2
= 100 ; 𝑎 = 10 ;
ℎ
𝐴𝐵𝐶
= √𝑎
2
− (
𝑎
2
)
2
= √𝑎
2
−
𝑎
2
4
= √
3𝑎
2
4
=
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑆
𝑦𝑜𝑛
= 24𝜋 ; 𝑉 = 48𝜋 . 𝐻 =?
𝑆
𝑦𝑜𝑛
= 2𝜋𝑅𝐻 ; 24𝜋 = 2𝜋𝑅𝐻 ; 𝑅𝐻 = 12 ; 𝑅 =
12
𝐻
;
𝑉 = 𝜋𝑅
2
𝐻 ; 48𝜋 = 𝜋 ∙ (
12
𝐻
)
2
∙ 𝐻 ; 48 =
144
𝐻
2
∙ 𝐻 ;
48𝐻 = 144 ; 𝐻 = 3 . 𝐽𝑎𝑣𝑜𝑏: 3 (𝑏𝑖𝑟𝑙𝑖𝑘) .
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 45
22-BILET
1.
√𝟔 − √𝟑𝟐 − √𝟔 + √𝟑𝟐
ifodaning qiymatini hisoblang.
√6 − √32 − √6 + √32 = √6 − 4√2 − √6 + 4√2 = √(2 − √2)
2
− √(2 + √2)
2
=
= 2 − √2 − 2 − √2 = −2√2 .
𝐽𝑎𝑣𝑜𝑏: − 2√2 .
2. Bir nechta matematik va fiziklarning oʻrtacha yoshi
𝟒𝟎
ga teng.
Matematiklarning oʻrtacha yoshi
𝟑𝟓
yosh boʻlib, ularning soni
𝟑𝟖
ta. Agar
fiziklarning oʻrtacha yoshi
𝟓𝟎
yosh boʻlsa, ularning soni nechta?
𝑛 = 38 ;
{
𝑎
1
+ 𝑎
2
+ ⋯ + 𝑎
𝑛
+ 𝑏
1
+ 𝑏
2
+ ⋯ + 𝑏
𝑚
𝑛 + 𝑚
= 40
𝑎
1
+ 𝑎
2
+ ⋯ + 𝑎
𝑛
𝑛
= 35
𝑏
1
+ 𝑏
2
+ ⋯ + 𝑏
𝑚
𝑚
= 50
→
→ {
𝑎
1
+ 𝑎
2
+ ⋯ + 𝑎
38
= 35 ∙ 38 = 1330
𝑏
1
+ 𝑏
2
+ ⋯ + 𝑏
𝑚
= 50𝑚
→
𝑎
1
+ 𝑎
2
+ ⋯ + 𝑎
38
⏟
1330
+ 𝑏
1
+ 𝑏
2
+ ⋯ + 𝑏
𝑚
⏟
50𝑚
= 40 ∙ (38 + 𝑚) ;
1330 + 50𝑚 = 1520 + 40𝑚 ; 50𝑚 − 40𝑚 = 1520 − 1330 ; 10𝑚 = 190 ;
𝑚 = 19 . 𝐽𝑎𝑣𝑜𝑏: 𝑚 = 19 𝑡𝑎 .
3.
∫ |𝒙 − 𝟑|
𝟓
𝟏
𝒅𝒙
integralni hisoblang.
∫|𝑥 − 3|
5
1
𝑑𝑥 = ∫|𝑥 − 3|
3
1
𝑑𝑥 + ∫|𝑥 − 3|
5
3
𝑑𝑥 = − ∫(𝑥 − 3)
3
1
𝑑𝑥 + ∫(𝑥 − 3)
5
3
𝑑𝑥 =
= (−
𝑥
2
2
+ 3𝑥) |
3
1
+ (
𝑥
2
2
− 3𝑥) |
5
3
= (−
3
2
2
+ 3 ∙ 3) − (−
1
2
2
+ 3 ∙ 1) +
+ (
5
2
2
− 3 ∙ 5) − (
3
2
2
− 3 ∙ 3) = −
9
2
+ 9 +
1
2
− 3 +
25
2
− 15 −
9
2
+ 9 = 4 .
𝐽𝑎𝑣𝑜𝑏: 4 .
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 46
4. Agar
𝒂
̅(−𝟏 ; 𝟐 ; 𝟖)
va
𝒃
̅(𝟑 ; −𝟐 ; 𝟏𝟓)
boʻlsa,
𝒎
̅ = 𝒃
̅ − 𝒂̅
vaktorning
uzunligini toping.
𝑥
1
= −1 ; 𝑦
1
= 2 ; 𝑧
1
= 8 ; 𝑥
2
= 3 ; 𝑦
2
= −2 ; 𝑧
2
= 15 ;
𝑚
⃗⃗ = 𝑏⃗ − 𝑎 ;
𝑚
⃗⃗ (𝑥
2
− 𝑥
1
; 𝑦
2
− 𝑦
1
; 𝑧
2
− 𝑧
1
) = 𝑚
⃗⃗ (3 − (−1) ; −2 − 2 ; 15 − 8) =
= 𝑚
⃗⃗ (3 + 1 ; −2 − 2 ; 15 − 8) = 𝑚
⃗⃗ (4 ; −4 ; 7) ; 𝑥 = 4 ; 𝑦 = −4 ; 𝑧 = 7 ;
|𝑚
⃗⃗ | = √𝑥
2
+ 𝑦
2
+ 𝑧
2
= √4
2
+ (−4)
2
+ 7
2
= √16 + 16 + 49 = √81 = 9 .
𝐽𝑎𝑣𝑜𝑏: |𝑚
⃗⃗ | = 9 .
5. Muntazam toʻrtburchakli kesik piramidaning balandligi
𝟖
ga, asoslarining
tomonlari
𝟏𝟐
va
𝟐𝟎
ga teng. Kesik piramidaning diagonalini toping.
𝐴
1
𝐸 = 𝐹𝐶
1
= 𝑥 ; 𝐴
1
𝐹 = 𝑦 ; 𝑥 =
𝐴
1
𝐶
1
− 𝐴𝐶
2
=
20√2 − 12√2
2
=
8√2
2
= 4√2 ;
𝑦 =
𝐴
1
𝐶
1
+ 𝐴𝐶
2
=
20√2 + 12√2
2
=
32√2
2
= 16√2 ;
𝑑 = √𝑦
2
+ ℎ
2
= √(16√2)
2
+ 8
2
= √256 ∙ 2 + 64 = √512 + 64 = √576 = 24 .
𝐽𝑎𝑣𝑜𝑏: 𝑑 = 24 (𝑏𝑖𝑟𝑙𝑖𝑘) .
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑎 = 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 = 𝐴𝐷 = 12 ;
𝑏 = 𝐴
1
𝐵
1
= 𝐵
1
𝐶
1
= 𝐶
1
𝐷
1
= 𝐴
1
𝐷
1
= 20 ;
ℎ = 𝑂𝑂
1
= 𝐴𝐸 = 𝐶𝐹 = 8 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑑 = 𝐴
1
𝐶 =?
𝐴𝐶 = √𝐴𝐷
2
+ 𝐶𝐷
2
= √𝑎
2
+ 𝑎
2
= √2𝑎
2
=
= 𝑎√2 = 12√2 ;
𝐴
1
𝐶
1
= √𝐴
1
𝐷
1
2
+ 𝐶
1
𝐷
1
2
= √𝑏
2
+ 𝑏
2
= √2𝑏
2
=
= 𝑏√2 = 20√2 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 48
4. Uchburchakning
𝟑
va
𝟒
ga teng boʻlgan tomonlariga oʻtkazilgan medianalari
oʻzaro perpendikulyar boʻlsa, bu uchburchakning uchinchi tomonini toping.
{𝐵𝑂
2
+ 𝑂𝐷
2
= 𝐵𝐷
2
𝐴𝑂
2
+ 𝑂𝐸
2
= 𝐵𝐷
2
→
{
(2𝑦)
2
+ 𝑥
2
= (
𝑎
2
)
2
(2𝑥)
2
+ 𝑦
2
= (
𝑏
2
)
2
→
{
4𝑦
2
+ 𝑥
2
= (
3
2
)
2
4𝑥
2
+ 𝑦
2
= (
4
2
)
2
→
→ {
4𝑦
2
+ 𝑥
2
=
9
4
4𝑥
2
+ 𝑦
2
= 4
→ 4𝑦
2
+ 𝑥
2
+ 4𝑥
2
+ 𝑦
2
=
9
4
+ 4 ; 5𝑥
2
+ 5𝑦
2
=
25
4
;
5(𝑥
2
+ 𝑦
2
) =
25
4
; 𝑥
2
+ 𝑦
2
=
25
4 ∙ 5
; 𝑥
2
+ 𝑦
2
=
25
20
; 𝑥
2
+ 𝑦
2
=
5
4
;
𝐴𝐵 = 𝑐 ; 𝑐 = √𝐴𝑂
2
+ 𝐵𝑂
2
= √(2𝑥)
2
+ (2𝑦)
2
= √4𝑥
2
+ 4𝑦
2
= √4(𝑥
2
+ 𝑦
2
) =
= 2 ∙ √𝑥
2
+ 𝑦
2
= 2 ∙ √
5
4
= 2 ∙
1
2
∙ √5 = √5 . 𝐽𝑎𝑣𝑜𝑏: 𝑐 = √5 (𝑏𝑖𝑟𝑙𝑖𝑘) .
Do'stlaringiz bilan baham: