@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 55
27-BILET
1. Agar
𝒂(𝒙 − 𝟏)
𝟐
+ 𝒃(𝒙 − 𝟏) + 𝒄 = 𝟐𝒙
𝟐
− 𝟓𝒙 + 𝟖
ayniyat boʻlsa,
𝒂 + 𝒃 + 𝒄
ni toping.
𝑎(𝑥 − 1)
2
+ 𝑏(𝑥 − 1) + 𝑐 = 2𝑥
2
− 5𝑥 + 8 ;
𝑎(𝑥 − 1)
2
+ 𝑏(𝑥 − 1) + 𝑐 = 𝑎(𝑥
2
− 2𝑥 + 1) + 𝑏𝑥 − 𝑏 + 𝑐 =
= 𝑎𝑥
2
− 2𝑎𝑥 + 𝑎 + 𝑏𝑥 − 𝑏 + 𝑐 = 𝑎𝑥
2
− 2𝑎𝑥 + 𝑏𝑥 + 𝑎 − 𝑏 + 𝑐 =
= 𝑎𝑥
2
+ (𝑏 − 2𝑎)𝑥 + 𝑎 − 𝑏 + 𝑐 ;
𝑎𝑥
2
+ (𝑏 − 2𝑎)𝑥 + 𝑎 − 𝑏 + 𝑐 = 2𝑥
2
− 5𝑥 + 8 ; {
𝑎 = 2
𝑏 − 2𝑎 = −5
𝑎 − 𝑏 + 𝑐 = 8
→
→ {
𝑎 = 2
𝑏 − 2 ∙ 2 = −5
2 − 𝑏 + 𝑐 = 8
→ {
𝑎 = 2
𝑏 = −5 + 4
−𝑏 + 𝑐 = 8 − 2
→ {
𝑎 = 2
𝑏 = −1
−(−1) + 𝑐 = 6
→
→ {
𝑎 = 2
𝑏 = −1
1 + 𝑐 = 6
→ {
𝑎 = 2
𝑏 = −1
𝑐 = 6 − 1
→ {
𝑎 = 2
𝑏 = −1
𝑐 = 5
→
𝑎 + 𝑏 + 𝑐 = 2 − 1 + 5 = 6 . 𝐽𝑎𝑣𝑜𝑏: 6 .
2. Agar arifmetik progressiyada
𝒂
𝟏
+ 𝒂
𝟐
+ 𝒂
𝟑
= 𝟏𝟖
va
𝒂
𝟏
∙ 𝒂
𝟐
∙ 𝒂
𝟑
= 𝟏𝟐𝟎
boʻlsa, uning birinchi hadi va ayirmasini toping.
{
𝑎
1
+ 𝑎
2
+ 𝑎
3
= 18
𝑎
1
∙ 𝑎
2
∙ 𝑎
3
= 120
→ {
𝑎
1
+ 𝑎
1
+ 𝑑 + 𝑎
1
+ 2𝑑 = 18
𝑎
1
∙ (𝑎
1
+ 𝑑) ∙ (𝑎
1
+ 2𝑑) = 120
→
→ {
3𝑎
1
+ 3𝑑 = 18
𝑎
1
∙ (𝑎
1
+ 𝑑) ∙ (𝑎
1
+ 2𝑑) = 120
→ {
𝑎
1
+ 𝑑 = 6
𝑎
1
∙ (𝑎
1
+ 𝑑) ∙ (𝑎
1
+ 2𝑑) = 120
→
→ {
𝑎
1
= 6 − 𝑑
𝑎
1
∙ (𝑎
1
+ 𝑑) ∙ (𝑎
1
+ 2𝑑) = 120
→
(6 − 𝑑) ∙ (6 − 𝑑 + 𝑑) ∙ (6 − 𝑑 + 2𝑑) = 120 ; 6 ∙ (6 − 𝑑) ∙ (6 + 𝑑) = 120 ;
(6 − 𝑑) ∙ (6 + 𝑑) = 20 ; 36 − 𝑑
2
= 20 ; 𝑑
2
= 36 − 20 ;
𝑑
2
= 16 ; 𝑑
2
= 4
2
; 𝑑 = 4 ; 𝑎
1
= 6 − 𝑑 = 6 − 4 = 2 ;
𝑎
2
= 𝑎
1
+ 𝑑 = 2 + 4 = 6 ; 𝑎
3
= 𝑎
1
+ 2𝑑 = 2 + 2 ∙ 4 = 2 + 8 = 10 .
𝐽𝑎𝑣𝑜𝑏: 𝑎
1
= 2 ; 𝑑 = 4 .
3. Agar
𝒇(𝒙) = 𝒙
𝟐
− 𝟑𝒙 − 𝟒
boʻlsa,
𝒇
′
(𝒙)
𝒙−𝟓
≤ 𝟎
tengsizlikni yeching.
𝑓′(𝑥) = (𝑥
2
− 3𝑥 − 4)
′
= 2𝑥 − 3 − 0 = 2𝑥 − 3 ;
𝑓
′
(𝑥)
𝑥 − 5
≤ 0 ;
2𝑥 − 3
𝑥 − 5
≤ 0 ; {
2𝑥 − 3 ≥ 0
𝑥 − 5 < 0
→ {
2𝑥 ≥ 3
𝑥 < 5
→
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 56
→ {𝑥 ≥
3
2
𝑥 < 5
→ {
𝑥 ≥ 1,5
𝑥 < 5
→ 1,5 ≤ 𝑥 < 5 . 𝐽𝑎𝑣𝑜𝑏: [1,5 ; 5).
4. Toʻgʻri burchakli uchburchakning oʻtkir burchaklaridan biri
𝟔𝟎°
ga teng.
Shu burchagi bissektrisasining uzunligi
𝟑 𝒄𝒎
ga teng boʻlsa, uning
gipotenuzasini toping.
𝛾 = 180° − (𝛼 + 𝛽) = 180° − (30° + 30°) = 180° − 60° = 120° ;
𝛼 = 𝛽 = 30° → 𝐴𝐷 = 𝐵𝐷 = 3 ;
𝐴𝐵 = √𝐴𝐷
2
+ 𝐵𝐷
2
− 2 ∙ 𝐴𝐷 ∙ 𝐵𝐷 ∙ cos 𝛾 = √3
2
+ 3
2
− 2 ∙ 3 ∙ 3 ∙ cos 120° =
= √9 + 9 − 18 ∙ (−
1
2
) = √18 + 9 = √27 = 3√3 . 𝐽𝑎𝑣𝑜𝑏: 𝐴𝐵 = 3√3 (𝑏𝑖𝑟𝑙𝑖𝑘) .
5. Konusning oʻq kesimi toʻgʻri burchakli uchburchakdan iborat. Konus
asosining yuzasi
𝟗𝝅
ga teng boʻlsa, uning yon sirti yuzini toping.
𝑆
𝑦𝑜𝑛
= 𝜋𝑅𝑙 = 𝜋 ∙ 3 ∙ 3√2 = 9√2𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) .
𝐽𝑎𝑣𝑜𝑏: 𝑆
𝑦𝑜𝑛
= 9√2𝜋 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘) .
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: ∠𝐴 = 60° ; 𝐴𝐷 = 3 𝑐𝑚 . 𝐴𝐵 =?
𝛽 = ∠𝐶 − ∠𝐴 = 90° − 60° = 30° ;
𝛼 =
∠𝐴
2
=
60°
2
= 30° ;
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑆
𝑎𝑠𝑜𝑠
= 9𝜋 . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑆
𝑦𝑜𝑛
=?
∠𝐴𝑆𝐵 = 90° ; 𝜋𝑅
2
= 𝑆
𝑎𝑠𝑜𝑠
; 𝜋𝑅
2
= 9𝜋 ;
𝑅
2
= 9 ; 𝑅
2
= 3
2
; 𝑅 = 3 ; 𝛼 = 45° ;
ℎ = 𝑅 = 3 ; 𝑙 = √𝑅
2
+ ℎ
2
= √3
2
+ 3
2
= 3√2 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 58
3.
𝒇(𝒙) = 𝐥𝐧(𝟏 − 𝐜𝐨𝐬 𝒙)
funksiya hosilasini toping.
𝑓′(𝑥) = (ln(1 − cos 𝑥))
′
=
1
1 − cos 𝑥
∙ (1 − cos 𝑥)
′
=
sin 𝑥
1 − cos 𝑥
=
=
2 ∙ sin
𝑥
2
∙ cos
𝑥
2
2 ∙ sin
2
𝑥
2
=
cos
𝑥
2
sin
𝑥
2
= 𝑐𝑡𝑔
𝑥
2
. 𝐽𝑎𝑣𝑜𝑏: 𝑐𝑡𝑔
𝑥
2
.
4. Uchburchakning
𝟏𝟐
ga teng boʻlgan balandligi uning asosi uzunligini
𝟏 ∶ 𝟖
nisbatda boʻladi. Shu balandlikka parallel va uchburchak yuzini teng ikkiga
boʻladigan toʻgʻri chiziq kesmasining uzunligini toping.
𝑆
𝐵𝐷𝐶
= 8 ∙ 𝑆
𝐴𝐵𝐷
= 8 ∙ 𝑥 ; 𝑆
𝐴𝐵𝐶
= 𝑆
𝐴𝐵𝐷
+ 𝑆
𝐵𝐷𝐶
= 𝑥 + 8𝑥 = 9𝑥 ;
𝑆
𝐴𝐵𝐹𝐸
= 𝑆
𝐹𝐸𝐶
=
𝑆
𝐴𝐵𝐶
2
=
9𝑥
2
; ∆𝐵𝐷𝐶~∆𝐹𝐸𝐶 ;
𝑆
𝐵𝐷𝐶
𝑆
𝐹𝐸𝐶
= (
𝐵𝐷
𝐹𝐸
)
2
;
8𝑥
9𝑥
2
= (
12
𝐹𝐸
)
2
; (
12
𝐹𝐸
)
2
=
16
9
; (
12
𝐹𝐸
)
2
= (
4
3
)
2
;
12
𝐹𝐸
=
4
3
;
4 ∙ 𝐹𝐸 = 12 ∙ 3 ; 𝐹𝐸 =
36
4
; 𝐹𝐸 = 9 . 𝐽𝑎𝑣𝑜𝑏: 𝐹𝐸 = 9 (𝑏𝑜𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐵𝐷 = 12 ; 𝐴𝐷 ∶ 𝐷𝐶 = 1 ∶ 8 ;
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝐹𝐸 =?
𝑆
𝐴𝐵𝐹𝐸
= 𝑆
𝐹𝐸𝐶
; 𝑆
𝐴𝐵𝐷
= 𝑥 ;
𝑆
𝐴𝐵𝐷
𝑆
𝐵𝐷𝐶
=
1
8
;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 59
5. Uchburchakli piramida asosining tomonlari
𝟓, 𝟏𝟐
va
𝟏𝟑
ga teng. Uning
barcha yon qirralari asos tekisligi bilan
𝟔𝟎°
burchak tashkil qiladi.
Piramidaning balandligini toping.
𝑡𝑔 60° =
𝐻
𝑅
; 𝐻 = 𝑅 ∙ 𝑡𝑔 60° =
13
2
∙ √3 =
13√3
2
. 𝐽𝑎𝑣𝑜𝑏: 𝐻 =
13√3
2
.
29-BILET
1. Toʻrtta sonnig yigʻindisi
𝟏𝟔𝟏
ga teng. Ulardan dastlabki uchtasi
𝟒; 𝟓
va
𝟖
sonlariga toʻgʻri proporsional, uchinchi va toʻrtinchi sonlar esa
𝟔
va
𝟖
sonlariga
teskari proporsional. Shu toʻrtta sonni toping.
𝑎 + 𝑏 + 𝑐 + 𝑑 = 161 ; 𝑎 = 4𝑥 ; 𝑏 = 5𝑥 ; 𝑐 = 8𝑥 ; 𝑐 =
1
6
𝑦 ; 𝑑 =
1
8
𝑦 ;
8𝑥 =
1
6
𝑦 ; 𝑦 = 6 ∙ 8𝑥 = 48𝑥 ; 𝑑 =
1
8
𝑦 =
1
8
∙ 48𝑥 =
48𝑥
8
= 6𝑥 ;
𝑎 + 𝑏 + 𝑐 + 𝑑 = 161 ; 4𝑥 + 5𝑥 + 8𝑥 + 6𝑥 = 161 ; 23𝑥 = 161 ;
𝑥 =
161
23
; 𝑥 = 7 ; 𝑎 = 4𝑥 = 4 ∙ 7 = 28 ; 𝑏 = 5𝑥 = 5 ∙ 7 = 35 ;
𝑐 = 8𝑥 = 8 ∙ 7 = 56 ; 𝑑 = 6𝑥 = 6 ∙ 7 = 42 . 𝐽𝑎𝑣𝑜𝑏: 28 ; 35 ; 56 ; 42 .
2.
𝟏 + 𝟐 ∙ 𝐜𝐨𝐬 𝟐𝒙 = 𝟎
tenglamani yeching.
1 + 2 ∙ cos 2𝑥 = 0 ; 2 ∙ cos 2𝑥 = −1 ; cos 2𝑥 = −
1
2
;
2𝑥 = ±
2𝜋
3
+ 2𝜋𝑘 ; 𝑥 = ±
𝜋
3 ∙ 2
+
2𝜋𝑘
2
; 𝑥 = ±
𝜋
3
+ 𝜋𝑘,
𝑘𝜖𝑍 .
𝐽𝑎𝑣𝑜𝑏: 𝑥 = ±
𝜋
3
+ 𝜋𝑘,
𝑘𝜖𝑍 .
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐴𝐵 = 5 ; 𝐵𝐶 = 12 ; 𝐴𝐶 = 13 ;
∠𝐷𝐴𝑂 = 60° . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝐻 =?
𝑅 = 𝐴𝑂 = 𝑂𝐶 =
𝐴𝐶
2
=
13
2
;
𝐴𝑔𝑎𝑟 𝑦𝑜𝑛 𝑞𝑖𝑟𝑟𝑎𝑙𝑎𝑟𝑖 𝑏𝑖𝑟 𝑥𝑖𝑙 𝑏𝑢𝑟𝑐ℎ𝑎𝑘𝑙𝑎𝑟
𝑡𝑎𝑠ℎ𝑘𝑖𝑙 𝑒𝑡𝑠𝑎, 𝑏𝑎𝑙𝑎𝑛𝑑𝑙𝑖𝑘 𝑎𝑠𝑜𝑠𝑖 𝑂 𝑛𝑢𝑞𝑡𝑎
𝑎𝑠𝑜𝑠𝑔𝑎 𝑡𝑎𝑠ℎ𝑞𝑖 𝑐ℎ𝑖𝑧𝑖𝑙𝑔𝑎𝑛 𝑎𝑦𝑙𝑎𝑛𝑎 𝑚𝑎𝑟𝑘𝑎𝑧𝑖𝑔𝑎
𝑡𝑢𝑠ℎ𝑎𝑑𝑖.
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 60
3.
𝒇(𝒙) =
𝟏𝟎𝒙
𝟓𝒙−𝟑
funksiyaning grafigiga
𝒙
𝟎
= 𝟏
nuqtada oʻtkazilgan urinma
tenglamasini toping.
𝑓(𝑥) =
10𝑥
5𝑥 − 3
; 𝑥
0
= 1 ; 𝒚 = 𝒇(𝒙
𝟎
) + 𝒇
′
(𝒙
𝟎
) ∙ (𝒙 − 𝒙
𝟎
) ;
𝑓(1) =
10 ∙ 1
5 ∙ 1 − 3
=
10
5 − 3
=
10
2
= 5 ;
𝑓
′
(𝑥) =
(10𝑥)
′
∙ (5𝑥 − 3) − 10𝑥 ∙ (5𝑥 − 3)
′
(5𝑥 − 3)
2
=
10(5𝑥 − 3) − 10𝑥 ∙ 5
(5𝑥 − 3)
2
=
=
50𝑥 − 30 − 50𝑥
(5𝑥 − 3)
2
= −
30
(5𝑥 − 3)
2
;
𝑓
′
(1) = −
30
(5 ∙ 1 − 3)
2
= −
30
(5 − 3)
2
= −
30
2
2
= −
30
4
= −
15
2
;
𝑦 = 5 −
15
2
∙ (𝑥 − 1) = 5 −
15
2
∙ 𝑥 +
15
2
= −
15
2
∙ 𝑥 +
25
2
.
𝐽𝑎𝑣𝑜𝑏: 𝑦 = −
15
2
𝑥 +
25
2
.
Do'stlaringiz bilan baham: