2. Tenglamalar sistemasini yeching:
{ 𝟐
𝒙+𝒚
= 𝟑𝟐
𝟑
𝟑𝒚−𝒙
= 𝟐𝟕
{2
𝑥+𝑦
= 32
3
3𝑦−𝑥
= 27
→ {2
𝑥+𝑦
= 2
5
3
3𝑦−𝑥
= 3
3
→ {
𝑥 + 𝑦 = 5
3𝑦 − 𝑥 = 3
→ {
𝑦 = 5 − 𝑥
3𝑦 − 𝑥 = 3
→
3 ∙ (5 − 𝑥) − 𝑥 = 3 ; 15 − 3𝑥 − 𝑥 = 3 ; −4𝑥 = 3 − 15 ; −4𝑥 = −12 ;
4𝑥 = 12 ; 𝑥 =
12
4
; 𝑥 = 3 ; 𝑦 = 5 − 𝑥 = 5 − 3 = 2 ; 𝑦 = 2 .
𝐽𝑎𝑣𝑜𝑏: 𝑥 = 3 ; 𝑦 = 2 .
3.
𝒇(𝒙) = √𝟐𝒙 + 𝟏
𝟑
∙ (𝟐𝒙 − 𝟑)
𝟑
funksiya hosilasini toping.
𝑓′(𝑥) = (√2𝑥 + 1
3
∙ (2𝑥 − 3)
3
)
′
=
= (√2𝑥 + 1
3
)
′
∙ (2𝑥 − 3)
3
+ √2𝑥 + 1
3
∙ ((2𝑥 − 3)
3
)
′
=
= ((2𝑥 + 1)
1
3
)
′
∙ (2𝑥 + 1)′ ∙ (2𝑥 − 3)
3
+ √2𝑥 + 1
3
∙ 3(2𝑥 − 3)
3−1
∙ (2𝑥 − 3)′ =
=
1
3
∙ (2𝑥 + 1)
1
3
−1
∙ 2 ∙ (2𝑥 − 3)
3
+ 3 ∙ √2𝑥 + 1
3
∙ (2𝑥 − 3)
2
∙ 2 =
=
2 ∙ (2𝑥 − 3)
3
3
∙ (2𝑥 + 1)
−
2
3
+ 6 ∙ √2𝑥 + 1
3
∙ (2𝑥 − 3)
2
=
=
2 ∙ (2𝑥 − 3)
3
3
∙
1
(2𝑥 + 1)
2
3
+ 6 ∙ √2𝑥 + 1
3
∙ (2𝑥 − 3)
2
=
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 26
=
2(2𝑥 − 3)
3
3√2𝑥 + 1
3
+ 6√2𝑥 + 1
3
∙ (2𝑥 − 3)
2
.
4. Uchburchakning asosi 60 ga teng. Unga tushirilgan balandlik va medianalar
mos ravishda 12 va 13 ga teng boʻlsa, uchburchakning yon tomonlarini
aniqlang.
𝐷𝐸 = √𝐶𝐸
2
− 𝐶𝐷
2
= √13
2
− 12
2
= √169 − 144 = √25 = 5 . 𝐷𝐸 = 5 ;
𝐴𝐷 = 𝐴𝐸 − 𝐷𝐸 = 30 − 5 = 25 ; 𝐵𝐷 = 𝐵𝐸 + 𝐷𝐸 = 30 + 5 = 35 ;
𝐴𝐶 = √𝐴𝐷
2
+ 𝐶𝐷
2
= √25
2
+ 12
2
= √625 + 144 = √769
𝐵𝐶 = √𝐵𝐷
2
+ 𝐶𝐷
2
= √35
2
+ 12
2
= √1225 + 144 = √1369 = 37 .
𝐽𝑎𝑣𝑜𝑏: 𝐴𝐶 = √769(𝑏𝑖𝑟𝑙𝑖𝑘) ; 𝐵𝐶 = 37 (𝑏𝑖𝑟𝑙𝑖𝑘).
5. Muntazam toʻrtburchakli piramidaning balandligi 9 ga, diagonal kesimining
yuzi 54 ga teng. Piramida hajmini toping.
𝑎
2
=
144
2
; 𝑎
2
= 72 ; 𝑎 = √72 = √36 ∙ 2 = 6√2 ; 𝑆
𝑎𝑠𝑜𝑠
= 72 ;
𝑉 =
1
3
∙ 𝑆
𝑎𝑠𝑜𝑠
∙ ℎ =
1
3
∙ 72 ∙ 9 = 72 ∙ 3 = 216 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐽𝑎𝑣𝑜𝑏: 𝑉 = 216 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐴𝐵 = 60 ; 𝐶𝐷 = 12 ; 𝐶𝐸 = 13 .
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝐴𝐶 =? , 𝐵𝐶 =?
𝐴𝐸 = 𝐵𝐸 =
𝐴𝐵
2
=
60
2
= 30 ;
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑎 = 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 = 𝐴𝐷 ; ℎ = 𝑆𝑂 = 9 ;
𝑆
𝐴𝐶𝑆
= 54 . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑉 =?
𝐴𝐶 ∙ ℎ
2
= 𝑆
𝐴𝐶𝑆
; 𝐴𝐶 ∙ ℎ = 2 ∙ 𝑆
𝐴𝐶𝑆
;
𝐴𝐶 =
2 ∙ 𝑆
𝐴𝐶𝑆
ℎ
=
2 ∙ 54
9
= 2 ∙ 6 = 12 ;
𝐴𝐶
2
+ 𝐵𝐶
2
= 𝐴𝐶
2
; 𝑎
2
+ 𝑎
2
= 12
2
; 2𝑎
2
= 144 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 27
13-BILET
1.
𝒇(𝒙) = 𝟐𝒙
𝟑
− 𝟏𝟓𝒙
𝟐
+ 𝟑𝟔𝒙
funksiyaning statsionar nuqtalarini toping.
𝑓′(𝑥) = (2𝑥
3
− 15𝑥
2
+ 36𝑥)
′
= 2 ∙ 3𝑥
2
− 15 ∙ 2𝑥 + 36 = 6𝑥
2
− 30𝑥 + 36 ;
6𝑥
2
− 30 + 36 = 0 ; 𝑥
2
− 5𝑥 + 6 = 0 ; 𝑥
2
− 2𝑥 − 3𝑥 + 6 = 0 ;
𝑥(𝑥 − 2) − 3(𝑥 − 2) = 0 ; (𝑥 − 2)(𝑥 − 3) = 0 ; {
𝑥 − 2 = 0
𝑥 − 3 = 0
→ {
𝑥
1
= 2
𝑥
2
= 3
𝐽𝑎𝑣𝑜𝑏: 𝑓𝑢𝑛𝑘𝑠𝑖𝑦𝑎𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑠𝑖𝑜𝑛𝑎𝑟 𝑛𝑢𝑞𝑡𝑎𝑙𝑎𝑟𝑖 𝑥
1
= 2 𝑣𝑎 𝑥
3
= 3 .
2. Agar
𝒙 = 𝟐
boʻlsa,
𝒙+√𝟑
√𝒙+√𝒙+√𝟑
+
𝒙−√𝟑
√𝒙−√𝒙−√𝟑
ni hisoblang.
𝑥 + √3
√𝑥 + √𝑥 + √3
+
𝑥 − √3
√𝑥 − √𝑥 − √3
=
=
(𝑥 + √3) (√𝑥 + √3 − √𝑥)
√3
+
(𝑥 − √3) (√𝑥 − √𝑥 − √3)
√3
=
=
(𝑥 + √3) ∙ √𝑥 + √3 − 𝑥√𝑥 − √3𝑥 + 𝑥√𝑥 − √3𝑥 − (𝑥 − √3) ∙ √𝑥 − √3
√3
=
=
(2 + √3) ∙ √2 + √3 − (2 − √3) ∙ √2 − √3 − 2√6
√3
=
=
(2 + √3) ∙ √4 + 2√3 − (2 − √3) ∙ √4 − 2√3 − 4√3
√6
=
=
4 + 2√3 − 4 + 2√3 − 4√3
√6
=
4√3 − 4√3
√6
=
0
√6
= 0 . 𝐽𝑎𝑣𝑜𝑏: 0 .
3. Tenglamani yeching:
𝟑
𝟐𝒙
− 𝟐 ∙ 𝟑
𝟐𝒙−𝟏
− 𝟐 ∙ 𝟑
𝟐𝒙−𝟐
= 𝟏 .
3
2𝑥
− 2 ∙ 3
2𝑥−1
− 2 ∙ 3
2𝑥−2
= 1 ; 3
2𝑥
− 2 ∙ 3
2𝑥
∙ 3
−1
− 2 ∙ 3
2𝑥
∙ 3
−2
= 1 ;
3
2𝑥
− 2 ∙ 3
2𝑥
∙
1
3
− 2 ∙ 3
2𝑥
∙
1
9
= 1 ; 3
2𝑥
− 2 ∙
3
2𝑥
3
− 2 ∙
3
2𝑥
9
= 1 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 28
9
𝑥
− 2 ∙
9
𝑥
3
− 2 ∙
9
𝑥
9
= 1 ; 9 ∙ 9
𝑥
− 6 ∙ 9
𝑥
− 2 ∙ 9
𝑥
= 9 ; 9
𝑥
(9 − 6 − 2) = 9 ;
9
𝑥
∙ 1 = 9 ; 9
𝑥
= 9 ; 9
𝑥
= 9
1
; 𝑥 = 1 . 𝐽𝑎𝑣𝑜𝑏: 1 .
4.
𝑨𝑩𝑪
uchburchakning
𝑨𝑩
tomonidan
𝑬
nuqta olingan. Agar
𝑩𝑬 = 𝟒, 𝑬𝑨 = 𝟓,
𝑩𝑪 = 𝟔
va
∠𝑪𝑩𝑬 = 𝟑𝟎°
boʻlsa,
𝑨𝑬𝑪
uchburchak yuzini toping.
𝐴𝐵 = 𝐵𝐸 + 𝐸𝐴 = 4 + 5 = 9 ; 𝑆
𝐴𝐸𝐶
=
𝐴𝐵 ∙ 𝐶𝐷
2
=
9 ∙ 3
2
=
27
2
= 13,5 .
𝐽𝑎𝑣𝑜𝑏: 𝑆
𝐴𝐸𝐶
= 13,5 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘).
5. Muntazam uchburchakli piramidaning yon qirrasi
𝟐𝟎
ga, asosining tomoni
𝟏𝟔 √𝟑
ga teng. Piramida hajmini toping.
ℎ = 𝑆𝑂 = √𝐴𝑆
2
− 𝑅
2
= √20
2
− 16
2
= √400 − 256 = √144 = 12 ;
𝑆
𝐴𝐵𝐶
=
𝐴𝐵
2
∙ √3
4
=
(16√3)
2
∙ √3
4
=
256 ∙ 3√3
4
= 64 ∙ 3√3 = 192√3 (𝑘𝑣. 𝑏𝑖𝑟𝑙𝑖𝑘) ;
𝑉 =
1
3
∙ 𝑆
𝐴𝐵𝐶
∙ ℎ =
1
3
∙ 192√3 ∙ 12 = 4 ∙ 192√3 = 768√3 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐽𝑎𝑣𝑜𝑏: 𝑉 = 768√3 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝐵𝐸 = 4 ; 𝐸𝐴 = 5 ; 𝐵𝐶 = 6 ;
∠𝐶𝐵𝐸 = 30° . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑆
𝐴𝐸𝐶
=?
𝐶𝐷 = 𝐵𝐶 ∙ sin 30° = 6 ∙
1
2
=
6
2
= 3 ; 𝐶𝐷 = 3 ;
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑎 = 𝐴𝐵 = 𝐵𝐶 = 𝐴𝐶 = 16√3 ;
∠𝐴 = ∠𝐵 = ∠𝐶 = 60° ; 𝑙 = 𝐴𝑆 = 𝐵𝑆 = 𝐶𝑆 = 20 ;
𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑉 =?
𝑅 = 𝐴𝑂 =
𝑎√3
3
=
16√3 ∙ √3
3
=
16 ∙ 3
3
= 16 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 29
14-BILET
1. Tengsizlikni yeching:
𝐥𝐨𝐠
𝟏𝟓
(𝒙 − 𝟑) + 𝐥𝐨𝐠
𝟏𝟓
(𝒙 − 𝟓) < 𝟏
.
log
15
(𝑥 − 3) + log
15
(𝑥 − 5) < 1 ; log
15
((𝑥 − 3) ∙ (𝑥 − 5)) = 1 ;
(𝑥 − 3) ∙ (𝑥 − 5) = 15
1
; 𝑥
2
− 5𝑥 − 3𝑥 + 15 = 15 ; 𝑥
2
− 8𝑥 + 15 − 15 = 0 ;
𝑥
2
− 8𝑥 = 0 ; 𝑥(𝑥 − 8) = 0 → {
𝑥 = 0
𝑥 − 8 = 0
→ {
𝑥 = 0
𝑥 = 8
→ {
∅
𝑥 = 8
𝐽𝑎𝑣𝑜𝑏: 𝑥 = 8 .
2. Ifodani soddalashtiring:
(𝟐 +
𝟏
𝒃
) ∶
𝟖𝒃
𝟐
+𝟖𝒃+𝟐
𝒃
𝟐
−𝟒𝒃
∙
𝟐𝒃+𝟏
𝒃
(2 +
1
𝑏
) ∶
8𝑏
2
+ 8𝑏 + 2
𝑏
2
− 4𝑏
∙
2𝑏 + 1
𝑏
=
2𝑏 + 1
𝑏
∙
𝑏
2
− 4𝑏
8𝑏
2
+ 8𝑏 + 2
∙
2𝑏 + 1
𝑏
=
=
(2𝑏 + 1)
2
𝑏
2
∙
𝑏(𝑏 − 4)
2 ∙ (4𝑏
2
+ 4𝑏 + 1)
=
(2𝑏 + 1)
2
𝑏
∙
𝑏 − 4
2 ∙ (2𝑏 + 1)
2
=
𝑏 − 4
2𝑏
.
𝐽𝑎𝑣𝑜𝑏:
𝑏 − 4
2𝑏
.
3.
𝒚 = 𝟐 + 𝐬𝐢𝐧 𝒙 , 𝒚 = 𝟎, 𝒙 = 𝟎
va
𝒙 = 𝝅
chiziqlar bilan chegaralangan soha
yuzini toping.
𝐽𝑎𝑣𝑜𝑏: 𝑆 = 2𝜋 + 2 (𝑘𝑣𝑎𝑑𝑟𝑎𝑡 𝑏𝑖𝑟𝑙𝑖𝑘).
𝑆 = ∫(2 + sin 𝑥)
𝜋
0
𝑑𝑥 = (2𝑥 + (− cos 𝑥)) |
𝜋
0
=
= (2𝑥 − cos 𝑥) |
𝜋
0
= (2 ∙ 𝜋 − cos 𝜋) − (2 ∙ 0 − cos 0) =
= 2𝜋 − (−1) − (0 − 1) = 2𝜋 + 1 − 0 + 1 = 2𝜋 + 2 .
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 30
4. Radiuslari
𝟓
va
𝟏𝟎
boʻlgan aylanalar tashqi urinadi. Agar ularga tashqi
urinma toʻgʻri chiziq oʻtkazilgan boʻlsa, tashqi urinish nuqtalari orasidagi
masofani toping.
5. Konusning yasovchisi
𝟔√𝟑
𝟑
ga teng va u asos tekisligi bilan
𝟑𝟎°
li
burchak hosil qiladi. Konus hajmini toping.
ℎ = 𝑙 ∙ sin 30° = 6√3
3
∙
1
2
= 3√3
3
; 𝑅 = 𝐴𝑂 = √𝑙
2
− ℎ
2
;
𝑅 = √(6√3
3
)
2
− (3√3
3
)
2
= √36 ∙ 3
2
3
− 9 ∙ 3
2
3
= √(36 − 9) ∙ 3
2
3
= √25 ∙ 3
2
3
=
= 5 ∙ √3
2
3
= 5 ∙ (3
2
3
)
1
2
= 5 ∙ 3
1
3
= 5√3
3
;
𝑆
𝑎𝑠𝑜𝑠
= 𝜋𝑅
2
= 𝜋 ∙ (5√3
3
)
2
= 25 ∙ (3
1
3
)
2
= 25 ∙ 3
2
3
= 25√3
2
3
= 25√9
3
(𝑘𝑣. 𝑏𝑖𝑟𝑙𝑖𝑘) ;
𝑉 =
1
3
∙ 𝑆
𝑎𝑠𝑜𝑠
∙ ℎ =
1
3
∙ 25√9
3
∙ 3√3
3
= 25√9
3
∙ √3
3
= 25√9 ∙ 3
3
= 25√27
3
=
= 25 ∙ 3 = 75 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘). 𝐽𝑎𝑣𝑜𝑏: 𝑉 = 75 (𝑘𝑢𝑏 𝑏𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑟 = 5 ; 𝑅 = 10 . 𝐴𝐵 =?
𝐴𝑂
3
= 𝑂
1
𝑂
2
= 𝑟 + 𝑅 = 5 + 10 = 15 ;
𝐴𝐵 = √(𝐴𝑂
3
)
2
− 𝑟
2
= √15
2
− 5
2
=
= √225 − 25 = √200 = 10√2 .
𝐽𝑎𝑣𝑜𝑏: 𝐴𝐵 = 10√2 (𝑏𝑖𝑟𝑙𝑖𝑘).
𝐵𝑒𝑟𝑖𝑙𝑔𝑎𝑛: 𝑙 = 𝐴𝑆 = 𝐵𝑆 = 6√3
3
;
𝛼 = ∠𝑆𝐴𝑂 = 30° . 𝑇𝑜𝑝𝑖𝑠ℎ 𝑘𝑒𝑟𝑎𝑘: 𝑉 =?
ℎ = 𝑆𝑂 ;
𝑆𝑂
𝐴𝑆
= sin(∠𝑆𝐴𝑂) ;
ℎ
𝑙
= sin 𝛼 ;
@MATEMATIKA979020397 | ASROROV ISAK URAZBOYEVICH | O‘RAZBOYEV JAHONGIR ISOQ O’G’LI
ASROROV ISAK URAZBOYEVICH TELEGRAM MANZIL : @MATEMATIKA979020397 31
15-BILET
1. Ifodani soddalashtiring:
(
𝟐𝟎
√𝟔+𝟏
+
𝟒
√𝟔−𝟐
−
𝟏𝟐
𝟑−√𝟔
) ∙ (𝟐√𝟔 + 𝟏𝟐) .
(
20
√6 + 1
+
4
√6 − 2
−
12
3 − √6
) ∙ (2√6 + 12) =
(
20(√6 − 1)
(√6 + 1)(√6 − 1)
+
4(√6 + 2)
(√6 − 2)(√6 + 2)
−
12(3 + √6)
(3 − √6)(3 + √6)
) ∙ (2√6 + 12) =
= (4√6 − 4 + 2√6 + 4 − 12 − 4√6)(2√6 + 12) = (2√6 − 12)(2√6 + 12) =
= (2√6)
2
− 12
2
= 24 − 144 = −120 . 𝐽𝑎𝑣𝑜𝑏: − 120 .
2. Tenglamani yeching:
(𝐥𝐨𝐠
𝟑
𝒙)
𝟐
+ 𝟓 = 𝟐 ∙ 𝐥𝐨𝐠
𝟑
𝒙
𝟑
(log
3
𝑥)
2
+ 5 = 2 ∙ log
3
𝑥
3
; (log
3
𝑥)
2
+ 5 = 2 ∙ 3 ∙ log
3
𝑥 ; log
3
𝑥 = 𝑡 ;
𝑡
2
+ 5 = 6𝑡 ; 𝑡
2
− 6𝑡 + 5 = 0 ; 𝑡
2
− 5𝑡 − 𝑡 + 5 = 0 ;
𝑡(𝑡 − 5) − (𝑡 − 5) = 0 ; (𝑡 − 1)(𝑡 − 5) = 0 → {
𝑡 − 1 = 0
𝑡 − 5 = 0
→
→ {
𝑡 = 1
𝑡 = 5
→ {
log
3
𝑥 = 1
log
3
𝑥 = 5
→ {𝑥 = 3
1
𝑥 = 3
5
→ {
𝑥 = 3
𝑥 = 243
→ {
𝑥
1
= 3
𝑥
2
= 243
𝐽𝑎𝑣𝑜𝑏: 𝑥
1
= 3 ; 𝑥
2
= 243 .
Do'stlaringiz bilan baham: |