Ionitlarning termik barqarorligini aniqlash usuli
Ionitlarning termik barqarorligi Netzsch Simultaneous Analyzer STA 409 PG (Germaniya) uskunasi, termoparoy K-tipa (Low RG Silver) termopara bilan va alyuminili tigeldan foydalanildi. Polimer materiallarning termik barqarorligini o‘zgarishini tadqiq qilish azotli inert muhitda azot ajralib chiqish tezligi 50 ml/min da olib borildi. Temperaturaning o‘zgarish diapazoni 25- 3500C da qizdirish tezligi 5 K/min da olib borildi. Tekshirilayotgan moddalar 20-30 mg qiymatda olindi. Jarayonning o‘zgarishi KNO3, In, Bi, Sn, Zn moddalardan tashkil topgan standart nabordan foydalanildi.
XULOSALAR
1. Mahalliy xomashyo PVX ni gazlarni tozalashda ishlatib bo’lingan chiqindi tarkibidagi DEA va MEA bilan modifikatsiyalash jarayonlariga ta’sir etuvchi omillarni o’rganish natijasida maqbul sharoitlar aniqlandi. Olingan moddalarni identifikatsiyalab hosil bo‘lgan polimer material tarkibida N tutganligi, hamda amino guruhlari hosil qilib PVX zanjiriga birikkanligi fizik-kimyoviy analiz usullari yordamida isbotlandi.
2. PVX asosida olingan sulfokationitni chiqindi tarkibidagi DEA va MEA bilan modifikatsiyalash natijasida yangi poliamfolit olish reaksiyasiga turli xil omillarning ta’sirini o‘rganish natijasida jarayonning maqbul sharoitlari topildi. Olingan moddaning identifikatsiyalab hosil bo‘lgan poliamfolit tarkibida S va N tutganligi, hamda ularning sulfo va amino guruhlari hosil qilib PVX zanjiriga birikkanligi fizik-kimyoviy analiz usullari yordamida isbotlandi.
3. Olingan polimerni IQ-spektroskopik usul bilan identifikatsiyalash orqali tarkibida ikkilamchi hamda uchlamchi amin guruh tutgan anionitlar, hamda poliamfolit tarkibida ham kation almashinuvchi sulfoguruhlar, ham anion almashinuvchi ikkilamchi aminoguruhlari borligi aniqlandi. Olingan ionitlarni skanerlovchi elektron mikrofotografiyalari tahlili uning sorbsiyalash jarayonini osonlashtiruvchi g‘ovak tuzilishga egaligi tasdiqlash imkonini berdi. Shuningdek ionitlarning o‘rganilgan fizik-kimyoviy xossalari sanoat miqyosida suvdagi mavjud ionlarni ajratib olishda ishlatish talablariga mos kelishini ko‘rsatdi.
4. Anionitlarga mis (II), xrom (VI) hamda Mn(VII) ionlarining yutilish kinetikasi tadqiq qilindi, hamda sorbsiya jarayonining aktivlanish energiyasi hisoblab topildi. Olingan natijalar o‘rganilayotgan jarayon psevdo-ikkinchi tartibli reaksiyalar qonuniyatlariga bo’ysinishi sistemadagi ionlar bilan bir qatorda ionit tarkibidagi ionogen guruhlar hisobiga ion-almashinish reaksiyalari borganligidan dalolat beradi. Sorbsiya jarayonining izotermik muvozanatini zamonaviy izoterma modellari yordamida o’rganilganda Lengmyur monomolekulyar nazariyasiga bo’ysinishi aniqlandi. Shuningdek adsorbsiya jarayonida termodinamik parametrlarini o’zgarishi ion-almashinish reaksiya borganligidan dalolat beradi.
5. Mahalliy xomashyolar va chiqindilar asosida olingan granulasimon anionitlar ishtirokida sanoat korxona suvlarini tozalash uchun bir necha marotaba dinamik sharoitda sorbsiya, desorbsiya jarayonlari amalga oshirilganda, uning sorbsion xossalari o‘zgarmasdan qolgani kuzatildi va natijada anionitni sanoat korxonalarida suvlarni tozalashda ko‘p marotaba qo‘llash mumkinligini imkonini berdi. Olingan ionitlar yordamida «MAXAM-Chirchiq» AJ hamda «Muborak gazni qayta ishlash zavodi» AJ texnologik jarayonlarida hosil bo‘ladigan suvlarini oraliq metall ionlaridan tozalashga imkon beruvchi maqbil uskuna ishlab chiqildi va sanoat miqyosida joriy qilinish uchun tavsiya etildi.
Adabiyotlar ro’yxati
1. Elbasiouny, H., Darwesh, M., Elbeltagy, H. et al. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. Environ Monit Assess 193, 449 (2021). https://doi.org/10.1007/s10661-021-09236-2
2. V. Masindi and K.L. Muedi. Environmental Contamination by Heavy Metals. Heavy Metals. 2018. 116-121. DOI:10.5772/intechopen.76082
3. Lee G., Bigham J.M., Faure G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry. 2002;17(5):569-581
4. Davron, B., Mukhtar, M., Nurbek, K., Suyun, X., Murod, J., Synthesis of a New Granulated Polyampholyte and its Sorption Properties. International Journal of Technology. 2020. Volume 11(4), pp. 794-803.
5. Nirav P Raval, Prapti U Shah, Nisha K Shah. Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management. 2016. (179) 1-20
6. Obuzdina M. V., Rush E. A., Shalunts L. V. Solving environmental problems of wastewater treatment by creating a sorbent based on zeolite. Ecology and industry of Russia. 2017. 8 pp. 20-25.
7. Anyu Li, Wenzhan Ge, Lihu Liu, Yutong Zhang, Guohong Qiu. Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd(II) and Pb(II). Chemical Engineering Journal. 2022. Vol. 439, pp. 1-15. https://doi.org/10.1016/j.cej.2022.135785
8. Yisa J. Heavy metals contamination of road deposited sediments. Am. J. Applied Sci., 2010. 7: 1231-1236.
9. Ong M.C., Kamruzzaman B.Y. An assessment of metals (Pb and Cu) contamination in bottom sediment from South China Sea coastal waters, Malaysia. Am. J. Applied Sci., 2009. 6: 1418-1423.;.
10. F. Gorzin., MM.B.R. Abadi. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology. 2018, Vol. 36(1–2) 149–169.DOI: 10.1177/0263617416686976
11. Renu, Madhu Agarwal and K. Singh. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination. 2017, vol. 7 (4): 387–419. https://doi.org/10.2166/wrd.2016.104
12. Athar H., Sangeeta M., Richa M. Removal of Heavy Metals from Wastewater by Adsorption. Heavy Metals - Their Environmental Impacts and Mitigation. 2021. pp.1-24. DOI:10.5772/intechopen.95841
13. G. Wang et al. Cr(VI) adsorption by montmorillonite nanocomposites. Applied Clay Science. 2016. vol. 124. 111–118.doi.org/10.1016/j.clay.2016.02.008
14. A. Kumar, H. M. Jena. Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4. Journal of Environmental Chemical Engineering. 2017, vol. 2 (5) pp. 2032-2041. doi.org/10.1016/j.jece.2017.03.035
15. Eun-H. Jang, S. P. Pack, I. Kim, S. Chung. A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Scientific Reports. 2020, vol. 10:5558. pp. 1-19. doi.org/10.1038/s41598-020-61505-1
16. Mohan D., Singh K.P., Single and multi-component adsorption of cadmium and zinc using activated carbon derivated from bagasse-an agricultural waste. Water Res., 2002. 36.p. 2304-2318.
17. Chajduk-Maleszewska E., Dybczyński R. Effective separation and preconcentration of trace amounts of Pd on Duolite ES 346 resin and its use for the determination of Pd by NAA, Analytical Chemistry, 2004; Vol. 49, pp. 281-297.
18. I. N. Pugacheva, S. B. Zueva, L. In. Molokanova. Recycled Sorbents for Wastewater Treatment. IOP Conference Series: Earth and Environmental. 2020, 459, 032062. pp 1-3. doi:10.1088/1755-1315/459/3/032062
19. Foo K.Y., Hameed B.H: Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 2010; 156(1), 2-10.
20. Kukfisz B. Efficiency analysis of the sorbents used to adsorb the vapors of petroleum products during rescue and firefighting actions. Wysocki Przem. Сhem. 2015, v. 94. №3. p. 331-335.
21. Foo K.Y., Hameed B.H: Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 2010; vol. 156(1), pp. 2-10.
22. Bekchanov D, Mukhamediev M,Lieberzeit P, Babojonova G, Botirov S. Polyvinylсhloride-based anion exchanger for efficient removal of chromium (VI) from aqueous solutions. Polym Adv Technol. 2021, pp. 1–10. https://doi.org/10.1002/pat.5403
23. Лейкин Ю.А. Физико – химические основи синтеза полимерних сорбентов: Масква БИНОМ. Лаборатория знаний 2015. - с 34.
24. Лахбаева Ж.А. Сорбционно-флокуляционная очистка воды от ионов тяжелых металлов. Дис.док.фил.(PhD) по хим. Каз.Н.У. им. Ал-Фараби. 2017. Ст. 9-31.
25. Choong T.S.Y. Oil removal from aqueous state by natural fibrous sorbent: An overview. Separation and Purification Technology. 2013. №113, p. 51-63.
26. Tewari P.K., Singh A.K. Amberlite XAD-7 impregnated with Xylenol Orange: a chelating collector for preconcentration of Cd(II), Co(II), Cu(II), Ni(II), Zn(II) and Fe(III) ions prior to their determination by flame AAS. Fresenius Journal of Analytical Chemistry. 2000. Vol. 367, pp. 562-567.
27. Ильичева Н.С., Китаева Н.К., Дуфлот В.Р. Синтез и свойства катионообменного полимерного сорбента на основе карбоксилированного полиэтилена. // Сорбционные и хроматографические процессы. 2010. Т. 10. Вып. 2. с. 216-222.
28. Braun D. Poly(vinyl chloride) on the way from the 19th century to the
21st century. J Polym Sci A Polym Chem. 2004;42:578-586.
29.https://www.statista.com/statistics/720296/global-polyvinylchloride-market-size-in-tons/
30. Sabaa MW, Mikhael MG, Mohamed NA, Yassin AA. N-substituted
maleimides as thermal stabilizers for rigid poly(vinyl chloride). Angew
Makromol Chem. 1989;168:23-35.
31.Yordanova S, Miloshev S. Thermal investigation of
calixarenecontaining PVC composites. J Univ Chem Technol Metall.
2006;41:397-402.
32. Moulay S. Trends in chemical modification of poly(vinyl chloride).
Khimiya (Chemistry). 2002;11:217-244.
33. J.K. Kiptoo, J.C. Ngila, N.D. Silavwe, Solid-phase extraction of Zn(II), Cu(II), Ni(II) and Pb(II) on poly(vinyl chloride) modified with 3-ferrocenyl-3-hydroxydithioacrylicacid, and their subsequent determination by electrochemical atomic absorption spectrometry, Microchim. Acta (2008) 211–218.
34. N. Pont, V. Salvadó, C. Fontàs, Selective transport and removal of Cd from chloride solutions by polymer inclusion membranes, J. Membr. Sci. 318 (2008) 340–345.
35. A. Ouerghui, H. Elamari, S. Ghammouri, R. Slimi, F. Meganem, C. Girard, Polystyrenesupported triazoles for metal ions extraction and evaluation, React. Funct. Polym. 74(2014) 37–45.
36. M.A. Tasdelen, G. Yilmaz, B. Iskin, Y. Yagci, Photoinduced free radical promoted copper(I)-catalyzed click chemistry for macromolecular syntheses, Macromolecules 45 (2012) 56–61.
37. Abid Ouerghui, Hichem Elamari, Mokthar Dardouri,SanaNcib, FaouziMeganem, Christian Girard- Chemical modifications of poly(vinyl chloride) to poly(vinyl azide) and “clicked”triazole bearing groups for application in metall cation extraction //Reactive and Functional Polymers 100 (2016) 191–197.
38. Peter Lieberzeit, Davron Bekchanov, Mukhtar Mukhamediev “Polyvinyl chloride modifications, properties, and applications” Polym Adv Technol.2022;1–12, wileyonlinelibrary.com/journal/pat.
39. М.М.Жўраев “Поливинилхлорид пластикат асосидаги янги ионитларнинг физик-кимёвий хоссалари” PhD-Dissertatsiya. Toshkent-2020
40. С.Ю.Хушвақтов “Пластикат поливинилхлорид асосидаги амино ва сульфогуруҳ тутган янги поликомплексонларнинг физик-кимёвий хоссалари” PhD-Dissertatsiya. Toshkent-2021
41. Podko´scielna, B.;Wawrzkiewicz, M.; Klapiszewski, Ł.Synthesis, Characterization and Sorption Ability of Epoxy Resin-Based Sorbents with Amine Groups. Polymers. 2021, vol. 13, p. 4139 https://doi.org/10.3390/polym
42. Turabdzhanov S.M., Rakhimova L.S. Synthesis of phosphoric acid cation-exchange polymer of polycondensation type. Austrian Journal of Technical and Natural Sciences. 2016. v.1. (2). p.111-113. DOI:10.20534/ajt-16-1.2-111-113
43. D.A. Gafurova, B.Sh. Khakimzhanov, M.G. Mukhamediev, and U. N. Musaev. Sorption of Cr(VI) on the Anion-Exchange Fibrous Material Based on Nitron. Russian Journal of Applied Chemistry, Vol. 75, No. 1, 2002, pp. 71 -74.
44. Н.Т. Каттаев, Т.М. Бабаев, У.Н. Мусаев. Модификatsiя сополимеров акрилонитрила с целью получения гранулированных сорбентов. Вест. Нatsiонального университета Узбекистана, 2005. Т.4. ст.36-38
45. M.K. Rustamov, D.A. Gafurova, M.M. Karimov, N.M. Rustamova, D.Zh. Bekchonov, M.G. Mukhamediev. Application of ion-exchange materials with high specific surface area for solving environmental problems. Russian Journal of General Chemistry.2014, vol. 84.№13 Страницы 2545-2551
46. Mukhamediev M.G., Bekchanov D.Z. New Anion Exchanger Based on Polyvinyl Chloride and Its Application in Industrial Water Treatment. RussJ Appl Chem. 2019. 92, 1499–1505. https://doi.org/10.1134/S1070427219110053.
47. Земскова Л.А., Шевелева И.В., Войт А.В., Емелина Т.Б., Глущенко В.Ю. Сорбция и электросорбция Си (II) модифицированными углеродными сорбентами. Цветные металлы. 2007. №2. c. 57-60.
48. Alexandratos Spiro D. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands. J. Hazardous Mater. 2007. Vol. 139. (3). 467-470.
49. Luca, C., Vlad, C.D., Bunia, I. Trends in weak base anion exchangers resins. Revue Roumaine de Chimie, 2009. Vol. 54, pp. 107-117.
50. Ергожин Е.Е.. Чалов Т.К.. Мельников Е.А.. Хакимболатова К.Х.. Никитина А.И. Сорбция ионов Сu2+ и Ме2+ полифункциональными анионитами на основе эпоксидных производных ароматических аминов и полиэтиленaмина. // Вода: химия и экология, 2012. №8 c. 74 — 79.
51. Ергожин Е.Е.. Чалов Т.К.. Мельников Е.А.. Хакимболатова К.Х.. Никитина А. П., Тасмагамбет А.Т. Новый сорбент на основе бензиламина, эпихлоргидрина и полиэтиленимина для извлечения конов переходных металлов // Материалы международной научно-практической конференции «Актуальные проблемы науки и образования в области естественных и сельскохозяйственных наук». Петропавловск. 2012. c. 148-149.
52. Randolf Kiefer and Wolfgang H. Sorption of Heavy Metals onto Selective Ion-Exchange Resins with Aminophosphonate Functional Groups Industrial & Engineering Chemistry Research 2001. (40) 4570-4576 DOI: 10.1021/ie010182l.
53. Mao C., Zhao WB.,Zhu AP., Shin J., Lin SC. A photochemical method for the surface modification of poly (vinylchloride) with o-butyrylchitosan to improve blood compability.// Process Biochem. 2004. Vol. 39. pp. 1151-1157.
54. Balakrishnan B., Jayakrishnan A. Chemical modification of poly (vinylchloride) using polyethylene glycol) to improve blood compatibility. // Trends BiomaterAtif Organs 2005. Vol. 18. pp. 230-236.
55. Eun Ji Park., Byoung Chul Park., Young Joong Kim., Ali Canlier., Taek Sung Hwang. Elimination and Substitution Compete During Amination of рoly (vinyl chloride) with Ehtylenediamine: XPS Analysis andApproach of Active Site Index Article in Macromolecular Research. 2018. vol.26, no.10, pp. 913-923 DOI: 10.1007/s13233-018-6123-z.
56. Ahmed I.S., Ghonaim A.K., Abdel Hakim A.A., Moustafa M.M., Kamal El-Din A.H. Synthesis and characterization of some polymers for removing of some heavy metal ions of industrial wastewater. J Appl Sci Res. 2008; 4: pp. 1946-1958.
44. Xue S.S., Gula M.J., Harvey J.T., Horwitz E. P. Контроль за содержанием железа в электролите, содержащем медь, в присутствии монофосфоно-сульфонсодержащего сорбента. Miner. and Met. Process., 2001. №3. Т.18. С.133-137.
57. Замбровская Е.В., Дитикова Т.В., Салдадзе Г.К. и др. №2059660. Способ получения сульфокатионита особой чистоты. Патент РФ. 1996. №3. c. 34.
58. Fernanda M. B., Coutinho Rosane R., Souza and Ailton S., Gomes. Синтез, характеристика и использование сульфокатионитов как катализаторы. European Polymer Journal, 2004. Vol. 40. - Iss. 7. С. 1525-1532.
59. E. I. Biryukova, S. Amosova, E. Likhoshvay. Synthesis of Sulphur-Containing Ionites by Means of Living Radical Copolymerization. Health & Environmental Research Online (HERO) 2007. Vol.15 (3) pp 323-328.
60. Bekchanov D, Kawakita H, Mukhamediev M, Khushvaktov S, Juraev M. Sorption of cobalt (II) and chromium (III) ions to nitrogen- and sulfur-containing polyampholyte on the basis of polyvinylchloride. Polym Adv. Technol. 2021;32:2700–2709.https://doi.org/10.1002/pat.5209
61. Мазур С.Г., Злобина А.С. и др. Сополимер стирола, N винил-3/5-метилпиразола, дивилбензола и этилстирола в качестве продукта для получения сульфакатионита. Авторское свидетельство СССР №1810354. 23.04.1993. Бюл. №15.c.490.
62. F. Barzagl., S. Lai., F. Mani. Novel non-aqueous amine solvents for reversible CO2 capture. Energy Procedia, 2014 Vol. 63, pp.1795-1804.
http://dx.doi.org/10.1016/j.egypro.2014.11.186
63. J.-G. Lu et al. Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column. Separation and Purification Technology. 2006. Vol 52, pp 209–217
64. Udara S. P. R. Arachchige, N.Aryal, Dag A. Eimer, Morten C. Melaaen. Viscosities of Pure and Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA). Annual transactions of the nordic rheology society. 2013, vol. 21, pp. 299-305.
65. Kyong-Hwan Chung,In-SooPark, Hye-Jin Bang,Young-KwonPark, Sun-Jae Kim, Byung-Joo Kim, Sang-Chul Jung. Heterogeneous photocatalytic degradation and hydrogen evolution from ethanolamine nuclear wastewater by a liquid phase plasma process. Science of the Total Environment 676 (2019) 190–196.
https://doi.org/10.1016/j.scitotenv.2019.04.291
66. F. Vega, A. Sanna, B. Navarrete, M. Mercedes, M.Valer,V.J. Cortés. Degradation of amine-based solvents in CO2 capture process by chemical absorption. Greenhouse Gas Sci Technol. 2014 vol 4 pp. 707-733.
67. Ángel Ramos-Espinosaa and etc. N-(R)ethanolamine dithiocarbamate ligands and their Ni(II) and Pt(II) complexes. Evaluation of thein vitro anticancer activity of the Pt(II) derivatives. Inorganica Chimica Acta 466 (2017) 584–590. http://dx.doi.org/10.1016/j.ica.2017.07.035
68. Perihan A. Khalf-Allaa and etc. Complex formation equilibria, DFT, docking, antioxidant and antimicrobial studies of iron(III) complexes involving Schiffbases derived from glucosamine or ethanolamine. Inorganica Chimica Acta 492 (2019) 192–197. https://doi.org/10.1016/j.ica.2019.04.035
69. Simone G. de Ávila, Marco A. Logli, Jivaldo R. Matos. Kinetic study of the thermal decomposition of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). International Journal of Greenhouse Gas Control 42 (2015) 666–671.
http://dx.doi.org/10.1016/j.ijggc.2015.10.001
70. Ayoub G.M., Semerjian L., Acra A.E., Fadel M., Koopman B., 2001, Heavy Metal Removal by Coagulation with Seawater Liquid Bittern. Journal of Environmental Engineering,127: 196–202. doi.org/10.1061/(ASCE)0733-9372(2001)127:3(196).
71. Malana M.A., Qureshi R.B., Ashiq M.N., Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism. Chem. Eng. 2011.J. 172, 721–727.
72. Kara A., Demirbel E. Kinetic Isotherm and Thermodynamic Analysison Adsorption of Cr(VI) Ions from Aqueous Solutions by Synthesis and Characterization of Magnetic-Poly (divinylbenzene-vinylimidazole) Microbeads Water Air Soil Pollut (2012) 223:2387–2392 doi:10.1007/s11270-011-1032-1.
73. Sepehr M.N., Zarrabi M., Kazemian H., Amrane A., Yaghma K. et al. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Applied Surface Science 274:295-305 б. doi.10.1016/j.apsusc. 2013.03.042. hal-00915133.
74. Hoffmann H., Martinola F.: Selective resins and special processes for softening water and solutions; A review, Reactive Polymers, Ion Exchangers, Sorbents, 1988, 7(2-3), 263-272.
75. Moussa Abbas., Zahia Harrache., Mohamed Trar. Removal of gentian violet in aqueous solution by activated carbon equilibrium, kinetics, and thermodynamic study. Adsorption Science & Technology. 2019 Vol 37, Issue 7-8, 0(0) 1–24. doi.org/10.1177/0263617419864504.
76. Yu Z., Qi T., Qu J., Wang L., Chu J. 2009, Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange. Journal of Hazardous Materials.167:406-412. doi: 10.1016/j.jhazmat.2008.12.140.
77. Jurayev M., Khushvaktov S., Botirov S., Bekchanov D., Mukhamediev M. Kinetics of Sorption of Ca (II) and Mg (II) ions from solutions to a New Sulphocathionite. International Journal of Advanced Science and Technology Vol. 29, No. 7, (2020), pp. 3395-3401.
78. Rostamian R., Heidarpour M., Mousavi S.F., Afyuni M. Removal of calcium and magnesium by activated carbons produced from agricultural wastes. Advances in Environmental Biology, 2014, 8: 202-208.
79. Rengaraj S., Yeon J.W., Kim Y., Yongju J. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis, Journalof Hazardous Materials, 2007, 143(1–2), 469-477.
82. Хушвақтов С.Ю., Жураев М.М., Бекчанов Д.Ж., Мухамедиев М.Г.Сорбция ионов меди (II) и никеля (II) на азот и серосодержашем полиамфолите. //UNIVERSUM: Химия и биология. (2019) № 11 (65).
Do'stlaringiz bilan baham: |