3.3E: Runge-Kutta usuli (mashqlar) - matematika
Ma'ruza yig'ilish vaqti: MWF soat 13:00 - 13:50.
Ma'ruzaning o'tkaziladigan joyi: MS 5138
O'qituvchi: Luminita A. Vese
Idora: MS 7620-D
Ish vaqti: Chorshanba soat 14-2.45 da, yoki tayinlangan holda.
Elektron pochta: lveseATmath.ucla.edu
Muhokama bo'limi: Payshanba, soat 13.00 dan 1.50 gacha, MS 5117
O'qituvchi yordamchisi: Jan-Mishel Maldaga
Idora: MS 2963
Ish vaqti: Payshanba 14-4.
Elektron pochta: jmmaldagueATmath.ucla.edu
Mavzular:
- ODE va ODE tizimlarining yuqori darajadagi ODE-ni ODE-ning 1-darajali tizimlariga tushirishi uchun eslatmalar va terminologiyalar asosiy mavjudlik va o'ziga xoslik thm. ODE uchun (Lipschitz holati).
- Eyler uslubini joriy etish, Eyler uslubining tartibi, bitta bosqichli usullar (kirish, ta'rif, izchillik, lokal kesma xatosi).
- aniq Runge-Kutta (ERK) usullari (usulni umumiy holatda kiritish, umumiy holatda yozuvlar, ikkinchi darajali ERKni chiqarish) to'rtinchi tartibdagi Runge-Kutta usuli.
- Yashirin usullarga misollar: trapezoidal qoida, o'rta nuqta qoidasi, teta usuli va bu usullar uchun buyruqlarni yashirin Eyler usuli hisoblash.
- bir bosqichli usullarning konvergentsiyasi (umumiy holat, shuningdek, Eyler uslubidagi konvergentsiyani va boshqalarni ko'ring).
- Bir bosqichli usullar bo'yicha global diskretizatsiya xatosi uchun asimptotik kengayishlar va xatolarni baholash uchun qo'llanmalar.
- bitta qadam usullarini amaliy amalga oshirish
- Lineer Multistep usullari: misollar, Lagranj interpolatsiya polinomidan foydalanib hosil qilish
- Ko'p bosqichli chiziqli usullar: lokal qisqartirish xatosini aniqlash va hisoblash, usulning tartibi, izchilligi.
- yashirin va aniq chiziqli ko'p bosqichli usullar bashorat qiluvchi-tuzatuvchi usullar.
- Bir-biridan ajralib turadigan izchil ko'p bosqichli usullarning namunalari.
- Lineer farq tenglamalari: barqarorlik (ildiz) sharti, umumiy echim.
- Konvergentsiya Thm. chiziqli ko'p bosqichli usullar uchun
- Chiziqli ko'p bosqichli usullar uchun tartib va izchillik
- Bir bosqichli va ko'p bosqichli usullar uchun adaptiv usullar, xatolarni boshqarish, Milne qurilmasi, ekstrapolyatsiya
- Qattiq differentsial tenglamalar, barqarorlik va absolyut barqarorlikning intervallari (mintaqalari), A-barqaror usullari, BDF usullari
- ODE tizimlari uchun raqamli usullar va barqarorlik
- Lineer BVP uchun cheklangan farq usullari
- ODE tizimlarini yopiq usul yordamida echish uchun funktsional (sobit nuqtali) takrorlash va Nyutonning takrorlanishi
Do'stlaringiz bilan baham: |