3. 3E: Runge-Kutta Usuli (Mashqlar) Matematika



Download 72,08 Kb.
bet8/15
Sana19.03.2022
Hajmi72,08 Kb.
#501496
1   ...   4   5   6   7   8   9   10   11   ...   15
Exercise 3
Suppose (y(t)) is the solution of the differential equation (y' + y = t^2 + 1) satisfying the initial condition (y(1) = 2) . Estimate (y(2)) using Euler’s method with a step size of (0.5) .
Qaror
Write (y' = t^2 + 1 - y) , so (f(t, y) = t^2 + 1 - y) . Then with (y(1) = 2) , we have (f(1, 2) = 1^2 + 1 - 2 = 0) , so we move horizontally at first, and adjust (y) by zero we estimate (y(1.5)=2) as well. Now we repeat the process, with (f(1.5,2)=(1.5)^2+1-2=1.25) , causing an adjustment by ((0.5)cdot(1.25) = 0.625) . So our estimate is (y(2) = 2.625) .
Exercise 4
Suppose (y(t)) solves the initial value problem [dot + frac<1> <1+t>, y = t^2 ,, qquad y(0) = 1 ,.] Estimate (y(1)) using Euler’s method and four steps. [You can work to four decimal places of precision if you’d prefer to avoid fractions.] If you can, write a computer program that allows you to run Euler’s method on this question with (100) steps.
Qaror
Our step size is (0.25) . Use (y' = t^2 - frac<1+t>) to see that (f(t,y) = t^2 - frac<1+t>) . The algorithm fills in the following table. [oshlanishi t & 0 & 0.25 & 0.5 & 0.75 & 1 hline y & 1 & 0.75 & 0.6136 & 0.5755 & 0.6339 f(t, y) & -1 & -0.5375 & -0.1604 & 0.2336 & end] To four decimal places, the author got (y(1) approx 0.6339) .
With (100) steps, the following MATLAB commands produce an estimate of (0.7856) .
Removing the semicolon in the y = y + yp * 0.01 line will cause MATLAB to print all the output it spews out 100 intermediate values of (y) . In it you can see the decrease followed by increase that we observed when doing it by hand with four steps.
Exercise 5
Suppose (y(t)) solves the differential equation (y' + y = 2t) with initial condition (y(2) = 0) .
Use the implicit Euler method with two steps to estimate (y(3)) .
Solve the equation and determine the actual value of (y(3)) for the solution with a zero at (t=2) .
What if we repeat part (a) with four steps? Does the estimate get any closer to the truth?
Qaror
Throughout this problem we have (f(t,y) = 2t - y) .
Our first equation to solve is [yleft( frac<5> <2> ight) - frac<1> <2>fleft(frac<5><2>, yleft(frac<5><2> ight) ight) = y(2) ,.] Plugging in what’s what, this equation is saying [yleft( frac<5> <2> ight) - frac<1> <2>left( 2 cdot frac<5> <2>- yleft( frac<5> <2> ight) ight) = 0 ,.] Solving this for (y(frac<5><2>)) gives us (y(frac<5><2>)=frac<5><3>) . Now we repeat the process with the equation [yleft(3 ight) - frac<1> <2>left( 3 - y(3) ight) = yleft( frac<5> <2> ight) = frac<5> <3>,.] The estimate we get is (y(3)=frac<28><9>=3.111cdots) .
The equation is linear, and we use the integrating factor (mu(t) = e^t) to solve it. After we multiply through by it, we have (frac
[e^ty] = 2te^t) , so (e^ty = 2te^t - 2e^t + c) , so the general solution is (y(t) = 2t - 2 + c,e^<-t>) . Plugging in (t=2) means (y(2) = 2 + c,e^<-2>) . If we want that to be zero, evidently (c = -2e^2) . Therefore the solution we were estimating in the previous part is [y(t) = 2t - 2 - 2 e^ <2-t>,.] This function has (y(3) approx 3.2642) .
Perhaps instead of doing what we did in part (a) it would be useful to have a formula for (y_) in terms of stuff we can already calculate. We have (y_ - hf(t_, y_) = y_n) , where (h = frac<1><4>) and (f(t,y)=2t-y) . Plugging that in and rearranging gives [y_ = frac<4> <5>left( y_n + frac<>> <2> ight) ,.] Armed with this it’s easy to fill in the following table. [oshlanishi t & 2 & 2.25 & 2.5 & 2.75 & 3 hline y & 0 & 0.9 & 1.72 & 2.476 & 3.1808 end] Indeed the estimate did improve slightly.

Download 72,08 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish