3. 3E: Runge-Kutta Usuli (Mashqlar) Matematika



Download 72,08 Kb.
bet9/15
Sana19.03.2022
Hajmi72,08 Kb.
#501496
1   ...   5   6   7   8   9   10   11   12   ...   15
Exercise 6
Let (y(t)) be a solution to (y' + frac<1><2>,ty^2 = 2) with (y(2) = 1) . Use implicit Euler with a step size (h=1) to estimate an approximate value of (y(5)) . [Let’s focus on the solution that will come up if we take positive square roots at every juncture possible.]
Qaror
The step size is (h=1) and the function (f(t,y)) is given by (2-frac<1><2>,ty^2) . The equation that implicit Euler gives us is [y_ - left( 2 - frac<1> <2>, t_ y_^2 ight) = y_n ,.] We complete the square next. Multiply the equation through by (frac<2><>>) to make the coefficient on (y_^2) equal to one, then add (frac<1><>^2>) to both sides. This gives us [left( y_ + frac<1><>> ight)^2 = frac<2y_n><>> + frac<4><>> + frac<1><>^2> ,,] so we’ve written (y_) in terms of stuff we can handle when we say [y_ = sqrt< frac<2y_n><>> + frac<4><>> + frac<1><>^2> > - frac<1><>> ,.] Now we fill in the table: [egin t & 2 & 3 & 4 & 5 hline y & 1 & 1.1196 & 1.0237 & 0.9178 end] Our estimate is (y(5) approx 0.9178) .
Exercise 7
Let (y(t)) be the solution to the initial-value problem (y' = sqrt) , (y(0) = 3) . Using four steps, estimate (y(1)) with the implicit Euler method. [Take positive square roots should the need arise, and use four decimals of precision.] [Hint. Though it doesn’t look like it at first, (y + alphasqrt) is the sort of thing that’s amenable to completing the square, where (alpha) is some constant.]
Qaror
We’ll need to do some algebra before we can plug in any numbers. The equation governing the next estimate of the function is [y_ - frac<1> <4>, sqrt<>> = y_n ,.] By adding (frac<1><64>) to both sides, we can complete a non-obvious square. This gives us [left( sqrt<>> - frac<1> <8> ight)^2 = y_n + frac<1> <64>,,] so the relation we went looking for is in fact [y_ = left( sqrt<64>> + frac<1> <8> ight)^2 ,.] Armed with this, we can make short work of the running of the algorithm: [egin t & 0 & 0.25 & 0.5 & 0.75 & 1 hline y & 3 & 3.4654 & 3.9631 & 4.4930 & 5.0551 end]
So our estimate is (y(1) approx 5.0551) .

Download 72,08 Kb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish