§3.2.Terpenoidlarning kimyoviy tuzilishi va ular asosidagi sintezlar
Trichoderma harzianum 22 zaharli zamburug' O'zbekiston Respublikasi Fanlar akademiyasining
Mikrobiologiya institutida zaharli zamburug' shtammlari kollektsiyasidan olingan bo'lib,
zamburug'ni Mandel`s va Chapek ozuqa muhitida o'stirib terpenoidlari o'rganildi hamda 4ta yangi
tuzilishli terpenoidlar ajratib olindi (3.8.-jadval).
3.8-jadval
Trichoderma harzianum 22 zamburug'i tarkibidan olingan alkaloidlar va terpenoidlar
№ Nomlarilari Tarkibi T.syuq.0S Trichoderma harzianum 55
Stachybotrys chartarum
Terpenoidlar
3 2,3-digidro-1,4-benzpiranol-4 ni ajratish C9H10O2 184-186 - +
4 Ergosterin C28H44O 169-170 + +
2,3-digidro-1,4-benzpiranol-4 (XI) tuzilishi. Trichoderma harzianum 22 zamburug'idan ustunli
xromatografiya usuli yordamida azotsiz modda, ya'ni terpenoid ajratib olindi.
Deyterometanolda qayd etilgan XI moddaning 1N YAMR spektrida aromatik halqaga xos ikki
tomonlama bog'langan to'rt xil protonlarga xos mul`tiplet signallarning mavjudligi orto-
bog'langan aromatik halqa mavjudligini ko'rsatadi: 7,9 m.u. (1H, d, J1 = 8.0, J2 = 1.6 Gts,
N-5), 6,977 m.u. (1H, d, J1 = 8.4, J2 =J3 = 1,6 GTS, H-7), 7,13 m.u. (1H, t, J1 = 8.4, J2 =
1,2 Gts, H-8), 7,25 m.u. da (1H, t, J1 = 8.0, J2 = 7.0, J3 = 1.20 Gts, H-6). Shuningdek,
spektrda CH2-CH2 guruhidagi protonlarning signallari 4,185 m.u.da to'rtta protonga xos
mul`tipletlar ko'rinishida bo'ladi (1H, dd, J1 = 12,10, J2 = 8.6, J3 = 4.4 Gts, N-2), 4,253
m.u. (1H, dt, J1 = 12,10; J2 = 7.6 Gts, H-2), 2,270 m.u. (1H, dd, J1 = 13.1, J2 = 7.6, J3 =
7.2, J4 = 7.4 Gts, H-3), 2,082 m.u. (1H, dd, J1 = 13.1, J2 = 8.6, J3 = 7.6, J4 = 7.2 Gts,
H-3) va gidroksil guruhiga geminal holda joylashgan protonining signali esa 7.255m.u.da.
(1N, t, J = 7,2 Gts, N-4) bir protonli triplet shaklida hosil bo'ladi. Olingan 1N YAMR spektr
ma'lumotlari XI tuzilish birikmaga mos keladi (ilova 3.48-3.50- rasmlar).
Shunday qilib, Trichoderma harzianum 22 zamburug'i tarkibidan birinchi marta 2,3-digidro-1,4
-benzpiranol-4 (XI) tuzilishli modda ajratib olindi. Ushbu moddani biologik faolligini
oshirish maqsadida gidroksil guruhiga xos atsillash, vinillash va oksidlash reaktsiyalari amalga
oshirildi.
Molekulaning gidroksil guruhlariga xos atsillash reaktsiyalari o'rganilganda, monoatsetatli
birikma hosil bo'ldi. Reaktsiya quyidagi sxema bo'yicha boradi:
Sirka angidrid molekulasida karbonil guruhidagi qo'sh bog'ning elektronlari kislorod tomon
siljiganligi sababli u qisman manfiy zaryadga ega bo'ladi va unga bog'langan uglerod atomi
esa qisman musbat zaryadlanadi. 2,3-digidro-1,4-benzpiranol-4 molekulasidagi ikkilamchi
gidroksil guruhining kislorod atomi nukleofil` agent sifatida sirka angidrid
molekulasidagi uglerod atomi bilan ta'sirlashadi va oraliq birikmani hosil qiladi, so'ngra
undan sirka kislota ajralishi hisobiga xroman-4-il atsetat (XLIX) hosil bo'ladi.
Ishda 2,3-digidro-1,4-benzpiranol-4 ni gomogen -katalitik usulda yuqori asosli sistema
(MeON-DMSO) ishtirokida atsetilen bilan vinillash reaktsiyasi amalga oshirildi. Bunda tegishli
terpenoidning mos ravishdagi vinil efiri hosil bo'lishi aniqlandi:
Jarayonda KON-DMSO yuqori asosli sistema bilan nukleofil` agentning ta'sirlashishi natijasida
molekula qisman qutblanib, oraliq mahsulot hosil qiladi. Oralik mahsulot o'z navbatida
atsetilen bilan ta'sirlashib barqarorligi kam bo'lgan o'tish holati birikmasini hosil qiladi va
yuqori asosli sistema ajrab chiqishi natijasida asosiy maxsulot- 4-(viniloksi)xroman (L)
sintez qilinadi. Jarayon quyidagi mexanizm bo'yicha boradi.
2,3-digidro-1,4-benzpiranol-4 molekulasidagi ikkilamchi gidroksil guruhini oksidlash uchun
Jons reagentidan foydalanildi. Reaktsiya natijasida Jons reagenti bilan oksidlanib, hosil
bo'lgan oraliq mahsulot beqaror bo'lganligi uchun eliminirlanish natijasida xroman-4-on (LI)
hosil bo'ladi. Reaktsiya quyidagi sxema va mexanizm bo'yicha boradi:
Ergosterin tuzilishi. Trichoderma harzianum 55 zamburug'ining geksanli fraktsiyalaridan
ergosterin birikma ajratib olindi. Ergosterin birikmaning 1H YAMR, 13C YAMR spektrlarini va
massa-spektrini o'rganish uni individual birikma ekanligini ko'rsatdi. Birikmaning yuqori
chastotali 1N YAMR spektrida ikkita uchlamchi va to'rtta ikkilamchi metil guruhlari
protonlarining signallari kuzatildi. 13C YAMR spektrida esa halqada joylashgan 2 ta qo'shbog'
yonidagi 4 ta uglerodning signallari 141,33, 119,65 m.u. va 117,14, 140,89 m.u. da, ochiq
zanjirdagi qo'shbog'ga bog'langan 2 ta uglerodning signallari 132.17, 146.15 m.u. da,
ikkilamchi gidroksil guruhidagi kislorod bilan bog'langan uglerod atomining signali 69,91
m.u. namoyon bo'ldi. Ushbu ma'lumotlar o'rganilayotgan birikmani 24-metilsterollarga tegishli
birikma ekanligini bildiradi (3.10-jadval).
3.10-jadval
Ergosterinning 1H YAMR va 13C YAMR spektr ma'lumotlari
S atom ?c ?N (J, Gts) ?S (adab.ma'lu [202])
1 38.98 38.9
2 33.03 32.5
3 69.91 3.97 m 70.0
4 42.02 ? 2.84 ddd (14.5; 4.9; 2.4) ? 2.69 m 41.4
5 141.33 . 141.0
6 119.65 5.51 m 119.7
7 117.14 5.73 dd (5.6; 2.4) 117.0
8 140.89 140.9
9 46.63 46.8
10 37.50 37.5
11 21.38 21.5
12 28.75 28.6
13 43.10 _ 43.3
14 54.83 54.9
15 23.40 23.4
16 39.34 39.7
17 55.86 56.3
18 12.23 0.69 s 12.1
19 16.59 1.06 s 16.3
20 40.81 40.8
21 19.87 1.10 d (6.6) 19.7
22 132.17 5.27 t (7.4) 132.5
23 136.15 * 136.3
24 43.10 43.3
25 33.50 33.5
26 20.17 0.888 d (6.8) 20.0
27 21.30 0.896 d (6.8) 21.3
28 17.87 0.99 d (6.9) 17.7
Izoh: *-suvning keng shakldagi 5,0 m.u. dagi signali qoplanishi natijasida N-23 protonning
signallari ko'rinmaydi.
Sterolning mass spektrida m/z 396 bo'lgan molekulyar ionning eng yuqori cho'qqisi qayd etildi:
m/z (%): M+ 396 (53.1), 363 (18.8), 337 (9.4), 285 (12.5), 253 (18.8), 251 (31.3),
157(21.9), 143(18.8),93 (53.1),91 (37.5),81 (93.8), 69 (100), 67 (40.6), 55 (93.8), 43
(43.8). Yuqorida ko'rsatilgan m/z 363, 253, 157, 143, 81, 69, 67 fragment ionlar
ergosterolga xos [203; -p. 2437]. O'rganilgan sterolning YAMR 13C spektridagi uglerod
atomlarining kimyoviy siljish qiymatlarini ergosterol bilan solishtirganda ularning o'zaro
o'xshashligini ko'rsatadi (3.10-jadval) [202; -p. 7445] (ilova 3.55-3.58 -rasmlar). Shunday
qilib, ushbu natijalar ajratib olingan steroidni ergosterol (22E, 24R - ergosta-5,7,22 -
trien-3?-ol) degan xulosaga kelishimizga asos bo'ladi.
XII
§3.3. Trichoderma harzianum qo'ziqorinining ekstraktlarini toksikologik va farmakologik
tadqiqotlari
Trichoderma harzianum qo'ziqorin fraktsiyasining toksikligini oq sichqonlar va kalamushlarga
og'iz orqali yuborish yo'li bilan o'tkazilgan tajribalarda o'rganilgan. Moddani bir martalik
kiritishdan keyin 14 kun davomida eksperimental hayvonlarni kuzatish amalga oshirildi.
Tadqiqotlar natijalari shuni ko'rsatdiki, 100 mg/kg dozada preparat umumiy holat va xatti-
harakatlarda sezilarli o'zgarishlarga olib kelmaydi. 800 mg/kg dozani kiritish bilan vosita
faolligini cheklash, skelet mushaklarining bo'shashishi va uyquchanlik qayd etildi. Dozani yanada
oshirish yuqoridagi zaharlanish belgilarining ko'payishiga olib kelmadi.
O'limning o'rtacha dozasi:
LD50 sichqonlar uchun - 800 mg/kg;
LD50 kalamushlar uchun - 880 mg/kg;
Turlarning sezgirlik koeffitsienti ifoda etilmaydi.
Trichoderma harzianum qo'ziqorin fraktsiyasini tirnash orqali ta'sir etish jarayonini o'rganishda,
oq quyonlarga 3x3 sm o'lchamdagi oldindan soqollangan maydonni teriga surtish orqali
o'tkazilgan. Preparat kuniga 7 kun davomida 3-5-10% eritma kontsentratsiyasida (moy eritmasi)
qo'llandi.
Tajriba boshlanganidan 6-7 kun o'tgach Trichoderma harzianum qo'ziqorin fraktsiyasining 3%
eritmasining aniq qo'llanilishi o'zgarishlar aniqlanmadi. Kontsentratsiyaning yanada o'sishi bilan
yuqorida tavsiflangan Trichoderma harzianum qo'ziqorin fraktsiyasining toksik ta'sirining
sur'ati sezilarli o'zgarmadi.
Shunday qilib, tadqiqotlar natijalari shuni ko'rsatdiki, Trichoderma harzianum qo'ziqorinining
fraktsiyalari teriga qo'llanilganda toksik ta'sir ko'rsatmadi.
§3.4. Biostim biopreparatining qishloq xo'jaligi ekinlari hosildorligiga ta'siri
Tanlangan faol sellyuloza parchalovchi, antibiotik va fitogormonlar sintezlovchi T. harzianum
55 shtammi mikromitset kul`tural suyuqligining turli xil kotsentratsiyalarini qishloq xo'jaligi
ekinlari rivojlanishi hamda kasalliklardan himoya qilishi borasida olib borilgan tadqiqot
natijalariga asoslanib laboratoriya sharoitida biopreparat olishning laboratoriya reglamenti
ishlab chiqildi (ilova).
Biopreparat yaratish uchun o'zgartirilgan Chapek va Mandel`s suyuq ozuqa muhitlaridan
foydalanildi. Ozuqa muhiti tarkibini sanoat chiqindisi hisoblangan melassa bilan boyitish
kul`tural suyuqlikda hosil bo'ladigan fitogormonlar miqdorining ortishi va biopreparat ishlab
chiqarishda uning tannarxini arzonlashtirish imkonini beradi.
Biopreparat olishda T. harzianum 55 shtammi zamburug' ikkilamchi metaboliti GK va ISK
faolligining yuqori bo'lishi uchun optimal saxoroza+melassali ozuqa muhitidan foydalanildi.
Trichoderma harzianum 55 zamburug' shtammi Mandel`s (rN 5,5) ozuqa muhitida yoki Chapek (rN
6,8) ozuqa muhitida 28-300S haroratda, 200-220 aylanish/minut tezligidagi chayqatgichda 20 l
hajmli shisha idishlarda 10 kun davomida o'stirildi. Kul`tural suyuqlikning titri 2x107 spor/ml
ni tashkil etdi. Zamburug'larning kul`tural suyuqliklari steril sharoitda biomassadan
fil`trlash orqali ajratildi. Kul`tural suyuqlik «Biostim» mikroo'stirgich biopreparati deb
belgilandi. Biopreparat och jigar rangda bo'lib, yoqimli kuchsiz hidga ega.
Laboratoriya sharoitida yaratilgan ushbu preparatning umumiy zaharliligi o'rganildi. Umumiy
zaharliligi bo'yicha klinik oldi o'tkazilgan tadqiqotlardan «Biostim» mikroo'stirgich preparati
qo'zg'atuvchi ta'sirlarga va kuchsiz kumulyativ xususiyatga ega emas deb baholandi. «Biostim»
mikroo'stirgich biopreparatining umumiy ta'siri va “o'tkir” zaharliligi o'rganildi, ushbu
preparat deyarli notoksik birikmalarning V sinfiga mansubligi aniqlandi (ilova).
4.1- rasm. «Biostim» mikroo'stirgich biopreparati tarkibidagi
biologik faol moddalar miqdori
O'tkazilgan laboratoriya va dala tajribalariga asoslanib, «Biostim» mikroo'stirgich
biopreparatining qishloq xo'jaligi ekinlari o'sishiga ta'siri va sarflanish me'yori belgilandi.
Unga ko'ra suyuq holdagi preparatning 10l miqdori 500 l oddiy suvga suyultirilib, 3 ga yer
maydoniga sarflanishi belgilandi. Shuningdek, biopreparat tarkibidagi o'simliklarning o'sish va
rivojlanishiga ta'sir etuvchi biologik faol moddalar miqdori ham aniqlangan. Unga ko'ra 1 ml
biopreparat tarkibida endo-1,4-?-glyukanaza faolligi 2,45 mg/ml, ekzo-1,4-?-glyukanaza 2,0
mg/ml, ksilinaza 5,5 mg/ml, oqsil 0,6 mg/ml, ISK 2,4 mg/ml va GK miqdori 2,0 mg/ml
ekanligi aniqlandi (4.1 rasm.).
Qishloq xo'jaligi ekinlarining hosildorligini oshiruvchi, ularni turli fitopatogen
mikromitsetlar qo'zg'atuvchi kasalliklardan himoya qiluvchi, qurg'oqchil sharoitlarda
o'simliklarning stressga chidamliligini oshiruvchi hamda tashqi muhitga moslashish qobiliyatini
kuchaytiruvchi preparatlarni yaratish va ularning sonini oshirish juda muhim hisoblanadi.
Laboratoriya sharoitida sinovdan o'tkazilgan «Biostim» mikroo'stirgich biopreparatini dala
sharoitida qishloq xo'jaligining asosiy ekin turlari hisoblanadigan paxta, bug'doy, piyoz,
pomidor va poliz ekinlariga ta'siri tadqiq etildi [162; .-p. 32-43].
Qashqadaryo viloyati Mirishkor tumani «Nodir BKS» fermer xo'jaligida 30 ga yer maydoniga
paxtaning «Buxoro - 8» naviga va Kasbi tumani Yozi ibn Ahmad bobo va Allaev Xolmat bobo
nomli fermer xo'jaliklarida 55 ga yer maydonlarida «Biostim» mikroo'stirgich biopreparatini
paxtaning «Buxoro-102» naviga ta'siri borasida tadqiqotlar o'tkazildi. Tajribada
biopreparatning 10:500 nisbatda kontsentratsiyasidan foydalanildi. Dastavval urug'lar 8 soat
davomida ivitildi, nazorat variantida esa urug'lar suvga ivitildi va polietilen plenka
bilan o'rab qo'yildi. Har ikkala variantlarda gektariga 60 kg.dan urug' bir vaqtda ekildi.
Fenologik kuzatuvlar paxta rivojlanish fazalari davrida olib borildi. Urug'lar nazorat
variantiga nisbatan tajriba variantida 3 kun oldin unib chiqishi kuzatildi. Gullash fazasidan
oldin bir marta va shonalash fazasidan oldin ikkinchi marta biopreparat bilan ishlov berildi.
Biopreparatning 10 litr miqdori 10:500 nisbatda suyultirildi va OVX apparati yordamida quyosh
botgandan so'ng g'o'za o'simliklariga ishlov berildi. Tadqiqotlar viloyatning har ikkala
tumanida bir vaqtning o'zida olib borildi (4.1 -jadval).
4.1 -jadval
«Biostim» mikroo'stirgich biopreparatining « Buxoro - 102» paxta navining o'sishi va
rivojlanishiga ta'siri
Kasbi tumani Yozi ibn Ahmad bobo nomli fermer xo'jaligi
Variantlar poya uzunligi(sm) shonalar soni ko'saklar soni gul soni
shoxlar soni
nazorat 67,8 7,6 2,67 1,65 4,67
«Biostim» mikroo'stirgich biopreparati 91,07 10,25 4,45 2,78 7,45
Mirishkor tumani « Nodir BKS » fermer xo'jaligi
nazorat 68,5 7,4 3,71 1,56 4,56
«Biostim» mikroo'stirgich biopreparati 90,16 9,46 5,78 2,87 7,65
Olib borilgan tadqiqot natijalariga ko'ra g'o'zaning o'rtacha uzunligi 90,12 sm ni tashkil etdi,
nazorat variantiga nisbatan tajriba varianti 21, 66 sm uzunligi kuzatildi. Shoxlar soni 57%
ga, shonalar miqdori 47% ga, ko'saklar soni 48,7 % ga va gullar soni 32% ga ko'pligi
aniqlandi. ( 4.1 jadvalga qarang)
4.1 - rasm. Dala amalyotida «Biostim» mikroo'stirgich biopreparatining g'o'za rivojlanishiga
ta'siri.
Qashqadaryo viloyati Kasbi tumani Allaev Xolmat bobo nomli fermer xo'jaligining 30 ga yer
maydonida «Biostim» mikroo'stirgich biopreparati paxtaning «Buxoro-102» (Reproduktsiya Elita)
naviga ta'sirini aniqlash uchun tadqiqotlar olib borildi. Tajriba uchun 22 ga, nazorat uchun 8
ga yonma-yon paxta maydoni ajratildi. 10:500 nisbatda suv bilan aralashtirilgan «Biostim»
mikroo'stirgich biopreparatida chigitlar 12 soat davomida ustiga polietilen plyonka yopilgan
holda ivitildi. So'ngra har bir sinov variantlari 12 qatordan 500 metr uzunlikdagi (0,5 ga
dan) yer maydoniga seyalka yordamida ekildi. Nazoratda chigitlar odatdagi usul bilan
(preparatsiz) ishlov berilib, ekildi. Tajriba variantidagi chigitlar nazoratga nisbatan 3
kun oldin unib chiqishi kuzatildi. Birinchi marta g'o'zaning shonalash fazasida preparatning
10:500 nisbatdagi kontsentratsiyasi bilan OVX yordamida kechki soat 1800-2000 oralig'ida
purkaldi. Tadqiqotlar natijasida tajriba variantlaridagi g'o'za poyalarining
baquvvatlashganligi, barg sathining kengligi, shonalash fazasida shonalar miqdorining 10-12%ga
ko'pligi, shoxlanish darajasining nisbatan ortganligi va paxta chanoqlarining nazoratga
nisbatan 5-7 kun erta ochilishi kuzatildi. Hosildorlik nazoratga nisbatan 8 s/ga (15%)ga
oshganligi aniqlandi.
Shuningdek, Mirishkor tumani «Nodir BKS» f/x da 30 ga yer maydonida paxtaning «Buxoro-8»
naviga «Biostim» mikroo'stirgich biopreparati ta'sirini aniqlash uchun tadqiqotlar olib
borildi.
«Biostim» mikroo'stirgich biopreparatining 10 litri 500 litr xlorsiz suvda suyultirilib,
paxtaning «Buxoro-8» navi chigitlari ekishdan oldin 8 soat davomida ivitilib ekildi va butun
vegetatsiya davomida yana ikki marotaba OVX purkagichi orqali oziqlantirildi. Bir gektar yer
maydoniga 0,5 litr biopreparat sarflandi. 2021 yil 30 aprelda ekilgan «Buxoro-8» paxta
navi 2021 yil 3 sentyabrda pishib yetildi. Tadqiqot natijalariga ko'ra tajriba variantida
bitta o'simlikda 40-45 dona, nazorat variantida esa 30-35 dona ko'saklar borligi, ya'ni
tajriba variantidagi ko'saklar soni 16 % ga ko'pligi aniqlandi. Tajriba variantidan 45 s/ga
va nazorat variantidan esa 35 s/ga hosil olindi. «Biostim» mikroo'stirgich biopreparati
bilan ishlov berilgan tajriba variantida o'simliklarning bo'yi nazoratga nisbatan 20-22 sm
uzunligi, yon shoxlari sonining 2-3 taga ko'pligi, hosildorligi 30% ga ortganligi va
fitopatogenlar qo'zg'atadigan kasalliklar bilan kasallanmaganligi aniqlandi.
Bundan tashqari Qashqadaryo viloyati Kasbi tumani Allaev Xolmat bobo nomli fermer xo'jaligi 15
ga yer maydonida «Biostim» mikroo'stirgich biopreparatining bug'doyning «Bunyodkor» naviga
ta'sirini aniqlash uchun tadqiqotlar olib borildi. Tajriba uchun 12 ga va nazorat uchun 3 ga
yer maydoni yonma-yon ajratildi. 2021 yil 20 oktyabrda «Biostim» mikroo'stirgich
biopreparatining 10:500 nisbatdagi kontsentratsiyasi bilan bug'doy urug'lari 12 soat davomida
ivitildi. So'ngra bug'doy urug'lari namligi bir oz quritilib, har bir sinov variantlari 16
metrdan, 500 metr uzunlikdagi (12 ga) yer maydoniga seyalka yordamida ekildi. Nazorat
variantida urug'lar hech qanday ishlov berilmasdan, an'anaviy usulda ekildi. Birinchi
oziqlantirish bug'doy maysalari 30sm dan oshgandan so'ng, «Biostim» mikroo'stirgich
biopreparatining 10:500 nisbatdagi kontsentratsiyasi OVX yordamida kechki soat 1800-2000
oralig'ida purkaldi. Boshqa barcha o'g'itlash va agrotexnika tadbirlari tajriba va nazorat
maydonlarida bir xilda olib borildi.
Tadqiqot natijalariga ko'ra, tajriba variantlaridagi bug'doy tuplari sonining ortganligi,
poyalarining baquvvatlashganligi va uzunligining nazoratga nisbatan ortganligi, boshoqlarning
yirikligi va bug'doy donlarining nazoratga nisbatan 10 kun erta pishganligi aniqlandi.
Shuningdek, tajriba variantida hosilning gektariga 5-8 sentner (12%) ortishiga erishildi.
Biopreparatning poliz ekinlariga ta'sirini aniqlash uchun Qashqadaryo viloyati Kasbi tumani
Allaev Xolmat bobo nomli fermer xo'jaligining 5 ga yer maydonida pomidorning «Sultoni» navi
ekildi va dala tajribalari olib borildi. Tajribada «Biostim» mikroo'stirgich
biopreparatining 3:500 nisbatdagi kontsentratsiyasidan foydalanildi. Pomidor urug'lari 8 soat
davomida ivitildi va 10 mayda ekildi. Pomidor ekinining umumiy maydoni 5 ga bo'lib, 4 ga
maydon tajriba uchun biopreparat bilan ishlov berilib ekildi, qolgan 1 ga esa urug'lari suvda
ivitilgan ko'chatlar nazorat sifatida ekildi. 10-11 iyunda «Biostim» mikroo'stirgich
biopreparati bilan ikkinchi marotaba ishlov berildi. Ko'chatlar gulga kirgandan keyin 10-15
kunda meva tuga boshladi. Tajriba variantida pomidor ko'chatlari nazoratga nisbatan tez unib
chiqqanligi va rivojlanganligi, barglar sonining 3-4 tagacha ko'payganligi, barglar sathi
kengayganligi hamda nazoratga nisbatan 3-4 kun oldin gullaganligi aniqlandi. «Biostim»
mikroo'stirgich biopreparati bilan ishlov berilgan tajriba variantida ekinlarning
kasallanmaganligi va hosildorlik gektariga o'rtacha 30-35 tonnani tashkil etganligi,
nazoratda esa o'simliklar barglarining sarg'ayganligi, o'simlikning tez qurib qolishi va
kasallanganligi aniqlandi. «Biostim» mikroo'stirgich biopreparati bilan ishlov berilganda
pomidor ekinlarinig hosildorligi nazoratga nisbatan 25% gacha ortganligi kuzatildi.
Shuningdek, «Biostim» mikroo'stirgich biopreparatini poliz ekinlarigi ta'sirini aniqlash uchun
esa xuddi shu fermer xo'jalikning 4 ga yer maydoniga «Fetansid» navli tarvuz va 1 ga yer
maydoniga oshqovoqning «Yapon» navi urug'lari ekildi (4.2-jadval).
4.2. jadval
«Biostim» mikroo'stirgich biopreparatining tarvuz va qovoq ekinlari rivojlanishiga ta'siri
Variantlar Ekilgan kundan boshlab rivojlanish fazasi, kun
tarvuzning «Fetansid» navi qovoqning «Yapon» navi
unib chiqishi palak yoyishi gullashi hosil tugishi unib chiqishi palak
yoyishi gullashi hosil tugishi
Nazorat
(ishlov berilmagan) 12 35 38 54 15 24 30 40
«Biostim» mikroo'stirgich biopreparati bilan
(ishlov berilgan) 7 29 24 38 9 18 23 30
Tajribada tarvuz va oshqovoq urug'lari «Biostim» mikroo'stirgich biopreparatining
3:500 nisbatdagi kontsentratsiyasida 8-10 soat davomida ivitilib 20 martda ekildi.
Biopreparat bilan ikkinchi marta 15-20 iyun kunlari ishlov berildi.
Tadqiqot natijalariga ko'ra tarvuz va qovoq ekinlari nazoratga nisbatan tajriba
variantida 3-4 kun oldin 6-7 kunda bexato unib chiqishi, 8-10 kunda chinbarg chiqarishi,
ekinlarning juda keng palak yozishi va 40 kundan so'ng gullashi kuzatildi. Nazoratda esa
ekinlarning hammasi unib chiqmaganligi, ekinlarning siyrakligi barglar orasida sarg'aygan
barglar ko'p uchrashi, gullashi 4-5 kunga kechikkanligi aniqlandi.Tajriba variantlarida har
ikkala poliz ekinining 80-90 kun ichida pishib yetilishi, 1 ga maydondan 25-30 t miqdorda
hosil olinishi va «Biostim» mikroo'stirgich biopreparati bilan ishlov berilganda tarvuz va
oshqovoq ekinlarining hosildorligi nazoratga nisbatan 20-25% ga ortishi aniqlandi.
Shuningdek, piyozning «Pantera» naviga biopreparatning ta'sirini o'rganish maqsadida 2021 yil
sentyabr` oyida Qashqadaryo viloyatining Kasbi tumanida Yozi ibn Axmad bobo nomli fermer
xo'jaligida 3 gektar yer maydonida tadqiqotlar olib borildi.
Buning uchun piyoz urug'lari 2 soat mobaynida «Biostim» mikroo'stirgich biopreparatining 3:500
nisbatdagi kontsentratsiyasiga ivitib qo'yildi. Biopreparat bilan ikki soat ishlov berilgandan
so'ng ekildi va butun vegetatsiya davomida yana ikki marta barglari orqali oziqlantirildi.
Tajribada fenologik kuzatishlar Dospexov usuli bo'yicha amalga oshirib ekildi [162; -p. 32-
43]. T. harzianum 55 mikromitseti asosida yaratilgan biopreparatlarni oz miqdorda piyozga
qo'llanilishi oq va kulrang chirish, askoxitoz kasalliklaridan himoyalashini ta'kidlaydi va 1 ga
maydondan 70-80 t miqdorda hosil olinishi va «Biostim» mikroo'stirgich biopreparati bilan
ishlov berilganda piyoz ekinining hosildorligi nazoratga nisbatan 20-25% ga ortishi aniqlandi
[183; - 28-31 b].
Biopreparat ta'sirida qishloq xo'jaligi ekinlarining hosildorligi ortishi bilan bir qatorda
mahsulot sifat darajasi yaxshilanishiga, tuproq unumdorligi saqlanishiga va tuproq
mikroflorasi tiklanishiga erishildi. «Biostim» mikroo'stirgich biopreparati tarkibidagi faol
mikroorganizmlar tuproqni o'zlashtiriladigan mineral moddalar va foydali mikroflora bilan
boyitishi hisobiga uning unumdorligini oshiradi, kimyoviy o'g'itlar sarfini qisqartiradi.
Biopreparatni qishloq xo'jaligida qo'llanilishi orqali tuproqning kimyoviy qoldiqlar bilan
zararlanishiga yo'l qo'ymaslik, qishloq xo'jalik mahsulotlarining ekologik sofligini saqlash
hamda iqtisodiy tejamkorlikka erishish asosiy maqsad bo'lib hisoblanadi.
“Biostim” biopreparati bilan ishlov berilishi natijasida tuproq unumdorligi yaxshilanganligi,
qishloq ho'jaligi ekinlari sifati va hosildorlik 3?12 s/ga gacha ortgani, hosilning ortishi
bilan birga 4?10 kun oldin yetilishi kuzatildi. “Biostim” biopreparati ta'sirida hosildorlik
nazorat variantiga nisbatan 5-12% ortganligi aniqlandi.
§3.5. Trichoderma harzianum zamburug' shtammi asosida olingan «Biostim» mikroo'stirgich
biopreparatining fitopatogen zamburug'larga nisbatan antagonistik xususiyatlari
Qishloq xo'jaligi uchun preparat yaratishda asosiy kriteriyalarga mos keluvchi, ya'ni samarali va
xavfsiz, raqobatbardosh, texnologik jihatdan foydali xamda qishloq xo'jalik ekinlariga
kasallik tarqatuvchi zamburug'lardan himoyalovchi mikroorganizmlarni tanlab olish juda muhim
omillardan biri hisoblanadi. Ayniqsa, mikroorganizmning antagonistlik xususiyatining yuqori
bo'lishi ishlab chiqiladigan preparatning asosiy xususiyatlaridan birini belgilaydi. Bu borada
dunyoda olimlar tomonidan Hyphomycetales tarkibiga kiruvchi Trichoderma harzianum avlodiga
mansub zamburug'larning e'tirof etilganligi ma'lum [184; -s. 13-16].
Ushbu turkum vakillaridan 200 dan ortiq moddalar sintez qilingan bo'lib, ular qatoriga 100
dan ortiq antibiotiklar ham kiradi. Shu sababli, tanlab olingan T. harzianum 55 zamburug'
shtammining fitopatogen zamburug'larga nisbatan antagonistik xususiyatini aniqlash bo'yicha
tadqiqotlar olib borildi. Ushbu shtammning antagonistik xususiyati Qashqadaryo viloyatidan
keltirilgan kasallangan paxta tolalaridan ajratib olingan Stachybotrys, Aspergillus,
Fusarium va Verticillium turiga mansub fitopatogen zamburug'larga nisbatan o'rganildi.
Tajribalar agarli blok, disk-diffuziya, agarli o'yiqcha va perpendikulyar shtrix usullarida
olib borildi [185; .- 28-34 b].
Trichoderma harzianum harzianum 55 zamburug'i A. flavus, Aspergillus flavus, Fusarium
oxysporum, Fusarium vasinfectum, Trichoderma harzianum 22va Verticillium dahliae kabi
patogenlarga nisbatan yuqori antagonistik faollikni namoyon qildi (4.3-jadval).
Eng yuqori faollik Trichoderma harzianum 22ga nisbatan belgilandi, o'sish zonasining
to'xtatishi 15mm dan, 70 mmga cha ekanligi aniqlandi. F. vasinfectum (40-60 mm), F.
Oxysporum, A. flavus zamburug'lariga o'sish zonasining yetishmasligi 10mm dan, 40 mm gacha
ekanligi aniqlandi.
Antagonist shtammning fitopatogen Aspergillus flavus va Verticillium dahliae zamburug'lari
ustidan to'liq ustunligi agarli blok usulida kuzatildi (4.3-jadval).
Stachybotrys chartarumga nisbatan T. harzianum 55 zamburug'ining antagonistik xususiyati
yuqorida keltirilgan 4 xil usulda o'rganilgan. Qo'llanilgan usullarda bionazorat agenti
patogenlar o'sishini kamaytirishi yoki ular ustidan to'liq ustunlik qilishi kuzatildi. Uning
ta'siri fitopatogen V.dahliae zamburug'iga nisbatan aniqlandi. Agarli blok usulida
antagonist shtamm bloklari petri likopchasining markaziga joylashtirilganda Trichoderma
harzianum 22patogen shtammining o'sish zonasini 70 mm gacha to'xtatishi aniqlandi. Trichoderma
harzianum 22ga nisbatan antagonistik faollik agarli o'yiqcha usulida aniqlanganda esa o'sish
zonasini 50,4 mm ga, shuningdek, disk-diffuziya usulida antagonist shtamm T.harzianum 55
zamburug'i kul`tural suyuqligidan 0,01 ml olib fil`tr qog'ozli disklar namlantirib qo'yilganda
patogen o'sish zonasini 25,1 mm gacha kamaytirishi kuzatildi.
Agarli o'yiqcha usulida tomizilgan 0,1 ml kultural suyuqlik va disk-diffuziya usulida fil`tr
qog'ozli diskni namlantirish uchun ketgan 0,01 ml kultural suyuqlik patogen o'sishini to'xtatib
qolishi tomizilgan kultural suyuqlik hajmiga proportsionaldir.Tadqiqotlardan olingan
natijalarga ko'ra, yuqoridagi usullarni qo'llash orqali qabul qilingan va har bir variantda
Trichoderma harzianum 22zamburug'i o'smaganligi kuzatildi. Patogen o'sish zonasining o'lchovi
qo'llanilgan antagonist shtamm kul`tural suyuqligining kontsentratsiyasiga bog'liq ekanligi
belgilandi.
Olingan natijalarga asoslanib T.harzianum 55 zamburug'i sintezlagan biologik faol moddalar
fitopatogenlarga nisbatan faol antagonistik xususiyatga ega ekanligi va antagonist
zamburug'ning spora mitselial massasida hamda kul`tural suyuqligi tarkibida mavjudligi
aniqlandi (4.3-jadval).
4.3-jadval
“Trixostim” biopreparatini fitopatogenlarga nisbatan
antagonistik ta'siri ( 3-4 kun)
№ Tajriba
usullari
Fusarium
oxysporum Aspergillus
flavus Verticillium
dahliae Stachybotrys
chartarum Alternaria
Tenus Fusarium
vasinfectum
Patogen o'sish zonasi (mm)
1 Agarli o'yiqcha 40,2 patogen o'sishini to'liq to'xtashi patogen o'sishini to'liq
to'xtashi 50,4 10,6 40,0
2 Fil`tr qog'ozli disk 30,7 10,2 patogen o'sishini to'liq to'xtashi 25,1
10,9 60,0
3 Agarli blok 40,3 10,3 10,4 70,1 40,1 40,6
4 Perpendikulyar shtrix 10,3 patogen o'sishini to'liq to'xtashi patogen o'sishini
to'liq to'xtashi 15,6 40,0 40,2
O'tkazilgan tajribalar shuni ko'rsatdiki, T.harzianum 55 zamburug'i bir qator mikromitsetlarga
nisbatan yuqori antibiotikli faollikka ega metabolitlar produtsenti hisoblanadi. Yuqori
antagonistik faollik A.tenius, A.flavus, F.vasinfectum, V.dahliae, S.chartarum va
F.oxysporum patogen zamburug'lariga nisbatan kuzatildi. Olingan natijalar antifungal
xususiyatga ega bo'lgan biopreparat yaratish uchun xizmat qiladi [162; -p. 32-43].
Laboratoriyada T.harzianum zamburug' shtammining antagonistik xususiyati fitopatogen
S.chartarum, A.alternata, V. Dahliae zamburug'lariga nisbatan agarli blok usulida
aniqlandi. Tadqiqot natijalariga ko'ra S.chartarum patogen zamburug'i o'sish zonasini 70,8 mm
ga, A.alternataning o'sish zonasini 40,5 mm ga kamaytirishi va V.dahliae zamburug'i o'sishiga
butunlay yo'l qo'ymasligi, ya'ni patogen ustidan to'liq ustunlik qilishi aniqlandi.
Uchinchi bob bo'yicha xulosa
Trichoderma harzianum mahalliy mikrometsid zamburug' tarkibida seskviterpenoid tuzilishli
alkaloidlar va terpenoidlar mavjudligi aniqlandi.
Trichoderma harzianum mahalliy mikrometsid zamburug' tarkibidan terpenoid va triterpenoid
tuzilishli birikmalar ajratilib, ularning tuzilishini o'rganishda fizik tadqiqot usullari va
kimyoviy modifikatsiyalashlardan foydalanildi.
Trichoderma harzianum mahalliy mikrometsid zamburug' ozuqa muhitini o'zgartirish orqali va
ozuqa muhitning azot va uglerod manbalarini o'zgartirish orqali ularning tarkibidagi
alkaloidlar va terpenoidlarning miqdorlari o'zgartirish usullari ishlab chiqildi.
Seskviterpenoid alkaloidlar va terpenoidlarning tuzilishi va faolligini o'rganish maqsadida
fizik tadqiqot usullari IQ, 1N YAMR, 13C YAMR, 2M YAMR 1N-1N - ROESY spektroskopiya, 2M YAMR
1H-13C korrelyatsion NMVS spektroskopiya, rentgen tuzilish tahlil usullari, yuqori chastotali
mass-spektrometriya va kimyoviy sintez usullaridan keng foydalanildi.
?
Istiqbolli mahalliy T.harzianum 55 mikromitseti asosida qishloq xo'jaligi ekinlari uchun
kompleks ta'sirga ega «Biostim» mikroo'stirgich biopreparati yaratilgan. Respublikamizning
Qashqadaryo viloyati Mirishkor tumani «Nodir BKS» fermer xo'jaligida 30 ga yerga «Buxoro - 8»
paxta navida va Kasbi tumani Yozi ibn Axmad bobo nomli va Allaev Xolmat bobo nomli fermer
xo'jaligida 55 ga yer maydonida paxtaning «Buxoro - 102» navida, Qashqadaryo viloyati Kasbi
tumani Allaev Xolmat bobo nomli fermer xo'jaligi 15 ga yerda bug'doyning «Bunyodkor» navida, 5
ga yer maydonida pomidorning «Sultoni» navida, 1 ga yer maydonida oshqovoqning «Yapon» va 4 ga
yer maydonida tarvuzning «Fetansid» navlarida va O'rmon xo'jaligi hududidagi 2 ga maydonda
ekilgan lavanda dorivor va noyob o'simligida sinovdan o'tkazilgan. «Biostim» mikroo'stirgich
biopreparati lavanda dorivor o'simligi, paxta, bug'doy, tarvuz, oshqovoq va pomidor
ekinlarining hosildorligi ortishiga ijobiy ta'sir etishi ko'rsatilgan.
T.harzianum 55 zamburug' shtammi S.chartarum patogen zamburug'i o'sish zonasini 70,8 mm ga,
A.alternata o'sish zonasini 40,5 mm ga kamaytirishi va V.dahliae zamburug'i o'sishiga butunlay
yo'l qo'ymasligi, ya'ni patogen ustidan to'liq ustunlik qilishi aniqlangan, hamda A.tenius,
A.flavus, F.vasinfectum, V.dahliae, S. chartarum va F.oxysporum patogen zamburug'lariga
nisbatan yuqori antifungal faolligi aniqlangan.
?
XULOSA
1. Ilk bor zamburug'lar tarkibidan alkaloid va terpenoidlarni natriy gidrokarbonat eritmasi
bilan neytral muhitda etilatsetat yordamida ajratishning yangi usuli ishlab chiqildi.
2 Birinchi marta Trichoderma harzianum 55, Trichoderma harzianum harzianum 22
shtammlarining seskviterpenoid tuzilishli 3 ta alkaloid, 3 ta terpenoid ajratib olindi va
ularning miqdoriy va sifat tarkibi, ozuqa muhitiga, tarkibidagi azot va uglerod
manbasining turiga bog'liqligi ko'rsatildi.
3. Trichoderma harzianum 55, Trichoderma harzianum 22 zamburug'laridan ajratilgan yangi
alkaloidlar, terpenoidlarning biologik faolligini oshirish maqsadida ularni N- va O-atsillash,
N- va O-vinillash reaktsiyalari tadqiq qilindi.
4. Trichoderma harzianum 55, Trichoderma harzianum 22 zamburug'laridan ajratilgan
alkaloidlar va terpenoidlar- 5-[(2-metoksifenoksi]-1,3-oksazolidin-2-on, indol sirka
kislotasi, garzian kislotalarining, gibberillin fizik tadqiqot usullari va kimyoviy
modifikatsiyalash yordamida seskviterpenoid tuzilishli ekanligi aniqlandi.
5. Trichoderma harzianum harzianum 55 zamburug' shtammi asosida “Biostim” biopreparati
ishlab chiqildi va uning qishloq ho'jaligi ekinlari hosildorligini o'rtacha 5-12 % gacha, oldin
yetilishini 4?10 kunga oshirishi izohlandi va qishloq xo'jaligi, o'rmon xo'jaliklarida amaliyotga
tadbiq etilgan.
?
FOYDALANILGAN ADABIYOTLAR
1. Ovchinnikov YU.A. Bioorganicheskaya ximiya. M.: Prosveshenie. 1987.-S.769-770.
2. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Reblova M.,
Groenewald J.Z., Crous P.W. Generic hyper-diversity in Stachybotriaceae. Persoonia 2016,
-v. 36, -p. 156–246.
3. Mendell M.J., Mirer A.G., Cheung K., Tong M., Douwes J. Respiratory and allergic
health effects of dampness, mold and dampness-related agents: A review of the
epidemiologic evidence. Environ. Health Perspect. 2011, -v. 119, -p.748–756.
4. Moss M.O. Aflatoxins and related mycotoxins. // In: Harborne J.B. (ed.),
Phytochemical Ecology. -London, Academic Press. 1972, -r. 125-144.
5. Page E.H., Trout D.B. The Role of Stachybotrys Mycotoxins in Building-Related
Illness. Am. Ind. Hyg. Assoc. J. 2001, 62, 644–648.
6. Bilay V.I., Pidoplichko N.M. Toksinoobrazuyushie mikroskopicheskie gribi i vizivaemie
imi zabolevaniya cheloveka i jivotnix. Kiev, Naukova dumka. -1970, -s. 56-59,-s. 292.
7. Fromme H., Gareis M., Volkel W., Gottschalk C. Overall internal exposure to
mycotoxins and their occurrence in occupational and residential settings-An overview. Int.
J. Hyg. Environ. Health 2016, -v.219, -p.143–165.
8. Miller J.D., McMullin D.R. Fungal secondary metabolites as harmful indoor air
contaminants: 10 years on. Appl. Microbiol. Biotechnol. 2014, -v. p. 98, 9953–9966.
9. Biermaier B., Gottschalk C., Schwaiger K., Gareis M. Occurrence of Trichoderma
harzianum 22chemotype S in dried culinary herbs. Mycotoxin Res. 2015, -v.31, -p. 23–32.
10. Andersen B., Nielsen K.F., Thrane U., Szaro T., Taylor J.W., Jarvis B.B. Molecular
and Phenotypic Descriptions of Stachybotrys chlorohalonata sp. nov. and Two Chemotypes of
Trichoderma harzianum 22Found in Water-Damaged Buildings. Mycologia. 2003, -v.95, -p.1227.
11. Andersen B., Nielsen K.F., Jarvis B.B. Characterization of Stachybotrys from
water-damaged buildings based on morphology, growth, and metabolite production.
Mycologia. 2002, -v.94, -p.392–403.
12. Nielsen K.F., Huttunen K., Hyvarinen A., Andersen B., Jarvis B.B., Hirvonen M.-R.
Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their
induction of inflammatory mediators and cytotoxicity in macrophages. Mycopathologia. 2002,
-v.154, -p. 201–205.
13. Matsuda Y., Abe I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 2016,-v.
33, -p. 26–53.
14. Wang A., Xu Y., Gao Y., Huang Q., Luo X., An H., Dong J. Chemical and bioactive
diversities of the genera Stachybotrys and Memnoniella secondary metabolites.
Phytochem. Rev. 2015, -v. 14, -p. 623–655.
15. Dosen I., Andersen B., Phippen C., Clausen G., Nielsen K.F. Stachybotrys
mycotoxins: From culture extracts to dust samples. Anal. Bioanal. Chem. 2016, -v.408. -p.
5513–5526.
16. Zhang P., Li Y., Jia C., Lang J., Niaz S.I., Li J., Yuan J., Yu J., Chen S., Liu
L. Antiviral and antiinflammatory meroterpenoids: Stachybonoids A–F from the crinoid-
derived fungus Trichoderma harzianum 22952. RSC Adv. 2017, -v.7, -p.49910–49916.
17. Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q. Harzianolide, a novel plant growth
regulator and systemicresistance elicitor from Trichoderma harzianum harzianum. Plant
Physiol. Biochem., 2013, 73, -p. 106–113.
18. Bhardwaj N., and Kumar J. Characterization of volatile secondary metabolites from
Trichoderma harzianum asperellum. J. Appl. Nat. Sci., 2017, 9, -p.954–959.
19. McMullin D. R., Renaud J. B., Barasubiye T., Sumarah M. W., and Miller J. D.
Metabolites of Trichoderma harzianum species isolated from damp building materials. Can.
J. Microbiol. 2017, 63, -p. 621–632.
20. Keswani C., Mishra S., Sarma B. K., Singh S. P., and Singh H. B. Unraveling the
e?cient applications of secondary metabolites of various Trichoderma harzianum spp. Appl.
Microbiol. Biotechnol. 2014, -v.98, -p. 533–544.
21. Zeilinger S., Gruber S., Bansal R., and Mukherje P. K. Secondary metabolism in
Trichoderma harzianum –chemistry meets genomics. Fungal Biol. Rev., 2016, -v.30, -p. 74–
90.
22. Li X. Q., Xu K., Liu X. M., and Zhang P. A systematicreview on secondary
metabolites of paecilomyces species: chemical diversity and biological activity. Planta
Med., 2020. -v. 86, -p. 805–821.
23. Ma X.H., Zheng W.M., Sun K.-H., Gu X.F., Zeng X.M., Zhang H.T., Zhong T.H., Shao
Z.Z., Zhang Y.H. Two new phenylspirodrimanes from the deep-sea derived fungus Stachybotrys
sp. MCCC 3A00409. Nat. Prod. Res. 2018, -p.1–7.
24. Lang B. Y., Li J., Zhou X. X., Chen Y. H., Yang Y. H., Li X. N. Koninginins L and
M two polyketides from Trichoderma harzianum koningii 8662. Phytochem. Lett., 2015, -
v.11, -p.1–4.
25. Li Y., Liu D., Cen S., Proksch P., Lin W. Isoindolinone-type alkaloids from the
sponge-derived fungus Stachybotrys chartarum. Tetrahedron 2014, -v.70, -p.7010–7015.
26. Li Y., Wu C., Liu D., Proksch P., Guo P., Lin W. Chartarlactams A-P,
phenylspirodrimanes from the sponge-associated fungus Trichoderma harzianum 22with
antihyperlipidemic activities. J. Nat. Prod. 2014, -v.77, -p.138–147.
27. Xu X. De., Guzman F.S., Gloer J.B. Stachybotrins A and B: novel bioactive
metabolites from a Brackish water isolate of the fungus Stachybotrys sp. J Org Chem. 1992,
-v. 57, -p.6700–6703.
28. Nozawa Y., Ito M., Sugawara K., Hanada K., Mizoue K () Stachybotrin C and
parvisporin, novel neuritogenic compounds. II. Structure determination. J Antibiot.
1997a,-v. 50,-p. 641–645.
29. Nozawa Y., Yamamoto K., Ito M., Sakai N., Mizoue K., Mizobe F., Hanada K ()
Stachybotrin C and parvisporin, novel neuritogenic compounds. I. Taxonomy, isolation,
physicochemical and biological properties. J Antibiot. 1997b, -v. 50, -p.635–640.
30. Inoue S., Kim R., Hoshino Y., Honda K. Synthesis of tricyclic pyrano[2,3-e]
isoindolin-3-ones as the core structure of stachybotrin A, B, and C. Chem Inform., 2006,
-v. 37, -p.1522–2667.
31. Jacolot M., Jean M., Tumma N., Bondon A., Chandrasekhar S., Weghe P.V. Synthesis
of stachybotrin C and all of its stereoisomers: structure revision. J Org Chem., 2013. -v.
78, -p.7169–7175.
32. Shinohara C., Hasumi K., Hatumi W., Endo A., Staplabin a novel fungal triprenyl
phenol which stimulates the binding of plasminogen to fibrin and U937 cells. J Antibiot.,
1996, -v.49, -p.961–966.
33. Hasumi K., Ishikawa M., Chikanishi T., Nishimura N., Hasegawa K., Pharmacological
composition for metabolic syndrome, obesity, hyperglycemia, hyperlipidemia and/or fatty
liver. PCT/JP 2010/053545, March., 2010a, -v.4, -p. 201.
34. Hasumi K., Yamamichi S., Harada T., Small-molecule modulators of zymogen
activation in the fibrinolytic and coagulation systems. FEBS J., 2010b. -v. 277, -p.3675–
3687.
35. Takayasu R., Hasumi K., Shinohara C., Endo A., Enhancement of fibrin binding and
activation of plasminogen by staplabin through induction of a conformational change in
plasminogen. FEBS Lett., 1997, -v. 418, -p.58–62.
36. Nishimura Y., Suzuki E., Hasegawa K., Nishimura N., Kitano Y., Hasumi K., Pre-SMTP
a key precursor for the biosynthesis of the SMTP plasminogen modulators. J. Antibiot.
2012, -v. 65. -p. 483–485.
37. Hasumi K., Ohyama S., Kohyama T., Ohsaki Y., Takayasu R., Endo A Isolation of
SMTP-3, -4, -5 and -6, novel analogs of staplabin, and their effects on plasminogen
activation and fibrinolysis. J Antibiot. 1998. -v. 51, -p.1059–1068.
38. Hu W., Ohyama S., Hasumi K., Activation of fibrinolysis by SMTP-7 and -8, novel
staplabin analogs with a pseudosymmetric structure. J Antibiot., 2000. –v. 53, -p.241–247.
39. Miyazaki T., Kimura Y., Ohata H., Hashimoto T., Shibata K., Hasumi K., Honda K.,
Distinct effects of tissue-type plasminogen activator and SMTP-7 on cerebrovascular
inflammation following thrombolytic reperfusion. Stroke. 2011, -v.42, -p.1097–1104.
40. Akamatsu Y., Saito A., Fujimura M., Shimizu H., Mekawy M., Hasumi K., Tominaga T.
Stachybotrys microspore triprenyl phenol-7, a novel fibrinolytic agent, suppresses
superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates
ischemia/reperfusion injury in rat brain. Neurosci Lett., 2011. –v. 503, -p.110–114.
41. Shibata K., Hashimoto T., Nobe K., Hasumi K., Honda K., a novel finding of a low-
molecular-weight compound, SMTP-7, having thrombolytic and anti-inflammatory effects in
cerebral infarction of mice. Nanuyn Schmiedebergs Arch Pharmacol., 2010, -v. 382, -p.245–
253.
42. Shibata K., Hashimoto T., Nobe K., Hasumi K., Honda K., Neuroprotective mechanisms
of SMTP-7 in cerebral infarction model in mice. Nanuyn Schmiedebergs Arch Pharmacol.,
2011, -v. 384, -p.103–108.
43. Kemmochi S., Hayashi H., Taniai E., Hasumi K., Sugita-Konishi Y., Kumagai S.,
Mitsumori K., Shibutani M., Protective effect of Stachybotrys microspora triprenyl
phenol-7 on the deposition of IgA to the glomerular mesangium in nivalenol-induced IgA
nephropathy using BALB/c Mice. J Toxicol Pathol. 2012, -v.25, -p.149–154.
44. Sawada H., Nishimural N., Suzuki E., Zhuang J., Hasegawa K., Takamatsu H., Honda
K., Hasumi K., SMTP-7, a novel small-molecule thrombolytic for ischemic stroke: a study in
rodents and primates. J Cereb Blood Flow Metab., 2014, -v. 34, -p.235–241.
45. Hu W., Ohyama S., Narasaki R., Hasumi K., Selective production of staplabin and
SMTPs in cultures of Stachybotrys microspora fed with precursor amines. J Antibiot.,
2001,-v. 54, -p.962–966.
46. Hu W., Kitano Y., Hasumi K., SMTP-4D, -5D, -6D, -7D and -8D, a new series of the
non-lysine-analog plasminogen modulators with a D-amino acid moiety. J Antibiot., 2003, -
v.56, -p.832–837.
47. Nishimura Y., Suzuki E., Hasegawa K., Nishimura N., Kitano Y., Hasumi K., Pre-
SMTP, a key precursor for the biosynthesis of the SMTP plasminogen modulators. J
Antibiot., 2012,-v. 65, -p.483–485.
48. Minagawa K., Kouzuki S., Nomura K., Yamaguchi T., Kawamura Y., Matsushima K., Tani
H, Ishii K., Tanimoto Y., Kamigauchi T., Bisabosquals, novel squalene synthase inhibitors.
I. Taxonomy, fermentation, isolation and biological activities. J Antibiot., 2001a, -v.
54, -p.890–895.
49. Minagawa K., Kouzuki S., Nomura K., Kawamura Y., Tani H., Terui Y., Nakai H.,
Bisabosquals, novel squalene synthase inhibitors. II. Physico-chemical properties and
structure elucidation. J Antibiot., 2001b. -v. 54, -p.896–933.
50. Snider B., Lobera M., Synthesis of the tetracyclic core of the bisabosquals.
Tetrahedron Lett., 2004, -v. 46, -p.5015–5018
51. Liu Z., Sun Y., Tang M., Sun P., Wang A., Hao Y, Trichodestruxins A-D: cytotoxic
cyclodepsipeptides from the endophytic fungus Trichoderma harzianum harzianum. J. Nat.
Prod., 2020, 83, -p. 3635–3641.
52. Du F. Y., Ju G. L., Xiao L., Zhou Y. M., and Wu X, Sesquiterpenes and
cyclodepsipeptides from marine-derived fungus Trichoderma harzianum longibrachiatum and
their antagonistic activities against soil-borne pathogens. Mar. Drugs., 2020, -v.18, -
p.165.
53. Shi Z. Z., Fang S. T., Miao F. P., Yin X. L., and Ji N., Y. Trichocarotins A-H and
trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma
harzianum virens. Bioorg. Chem., 2018a,-v. 81, -p. 319–325.
54. Yamazaki H., Takahashi O., Kirikoshi R., Yagi A., Ogasawara T., Bunya Y.,
Epipolythiodiketopiperazine and trichothecene derivatives from the NaI-containing
fermentation of marine-derived Trichoderma harzianum cf. brevicompactum. J. Antibiot.,
2020a, -v. 73, -p. 559–567.
55. Harwoko H., Daletos G., Stuhldreier F., Lee J., Wesselborg S., Feldbr`gge M.,
Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum harzianum
and Epicoccum nigrum. Nat. Prod. Res., 2021. -v. 35, -p.257–265.
56. Zhao D. L., Zhang X. F., Huang R. H., Wang D., Wang X. Q., Li Y. Q., Antifungal
nafuredinand epithiodiketopiperazine derivatives from the mangrove-derived fungus
Trichoderma harzianum harzianum D13. Front. Microbiol. 2020, -v.11, -p.1495.
57. Shi Z. Z., Miao F. P., Fang S. T., Yin X. L., and Ji N. Y., Sulfurated
diketopiperazines froman algicolous isolate of Trichoderma harzianum virens. Phytochem.
Lett. 2018b. -v. 27, -p. 101–104.
58. Song Y., Miao F., Yin X., and Ji N., Three nitrogen-containing metabolites from an
algicolous isolate of Trichoderma harzianum asperellum. Mar. Life Sci. Technol. 2020, -v.
2, -p. 155–160.
59. Miyano R., Matsuo H., Mokudai T., Noguchi Y., Higo M., Nonaka K. Trichothioneic
acid, a new antioxidant compound produced by the fungal strain Trichoderma harzianum
virens FKI-7573. J. Biosci. Bioeng. 2020, -v.129, -p. 508–513.
60. Yu J. Y., Shi T., Zhou Y., Xu Y., Zhao D. L., and Wang C. Y., Naphthalene
derivatives and halogenate quinoline from the coral-derived fungus Trichoderma harzianum
harzianum (XS-20090075) through OSMAC approach. J. Asian Nat. Prod. Res. 2021, -v. 23, -p.
250–257.
61. Ding G., Chen L., Zhou C., Hong-Mei J., Liu Y. T., Chang X. Trichoderamides A and
B, a pair of stereoisomers from the plant endophytic fungus Trichoderma harzianum gamsii.
J. Antibiot. 2015. -v. 68, -p. 409–413.
62. Wu B., Oesker V., Wiese J., Schmaljohann R., and Imho? J. F. Two new antibiotic
pyridones produced by a marine fungus, Trichoderma harzianum sp. strain MF106. Mar.
Drugs., 2014. -v. 12, -p.1208–1219.
63. Vinale F., Nigro M., Sivasithamparam K., Flematti G., Ghisalberti E. L., Ruocco
M., Harzianic acid: a novel siderophore from Trichoderma harzianum harzianum. FEMS
Microbiol. Lett., 2013. -v. 347, -p.123–129.
64. Zhou P., Wu Z., Tan D., Yang J., Zhou Q., Zeng F. Atrichodermones A–C, three new
secondary metabolites from thesolid culture of an endophytic fungal strain, Trichoderma
harzianum atroviride. Fitoterapia., 2017. -v. 123, -p.18–22.
65. Yin Y., Fu Q., Wu W., Cai M., Zhou X., Zhang Y., Producing Novel Fibrinolytic
Isoindolinone Derivatives in Marine Fungus Stachybotrys longispora FG216 by the Rational
Supply of Amino Compounds According to Its Biosynthesis Pathway. Mar. Drugs 2017, -v.15,
-p.214.
66. Lin T. W., Chang W. W., Chen C. C., Tsai Y. C., Stachybotrydial a potent inhibitor
of fucosyltransferase and sialyltransferase. Biochem. Biophys. Res. Commun. 2005, -v.331,
-p. 953–957.
67. Zhang Y. G., Tian R. R., Liu S. C., Chen X. L., Liu X. Z., Che Y. S., Alachalasins
A-G, new cytochalasins from the fungus Stachybotrys charatum. Bioorg Med Chem., 2008, -v.
16, -p.2627–2634.
68. Hossain MA, Ahmed MS, Ghannoum MA Attributes of Trichoderma harzianum 22and its
association with human disease. J Allergy Clin Immunol. 2004, -v.113, -p. 200–208.
69. Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q., Harzianolide, a novel plant growth
regulator and systemicresistance elicitor from Trichoderma harzianum harzianum. Plant
Physiol. Biochem., 2013, -v.73, -p. 106–113.
70. Bhardwaj N., Kumar J., Characterization of volatile secondary metabolites from
Trichoderma harzianum asperellum. J. Appl. Nat. Sci., 2017, -v.9, -p.954–959.
71. McMullin D. R., Renaud J. B., Barasubiye T., Sumarah M. W., Miller J. D.,
Metabolites of Trichoderma harzianum species isolated from damp building materials. Can.
J. Microbiol. 2017. -v. 63, -p. 621–632.
72. Keswani C., Mishra S., Sarma B. K., Singh S. P., Singh H. B., Unraveling the
e?cient applications of secondary metabolites of various Trichoderma harzianum spp. Appl.
Microbiol. Biotechnol. 2014, -v.98, -p. 533–544.
73. Zeilinger S., Gruber S., Bansal R., and Mukherjee P. K., Secondary metabolism in
Trichoderma harzianum –chemistry meets genomics. Fungal Biol. Rev., 2016, -v.30, -p. 74–
90.
74. Li X. Q., Xu K., Liu X. M., and Zhang P. A systematicreview on secondary
metabolites of paecilomyces species: chemical diversity and biological activity. Planta
Med., 2020. -v. 86, -p. 805–821.
75. Amagata T., Rath C., Rigot J. F., Tarlov N., Tenney K., Valeriote F. A., Crews P
Structures and cytotoxic properties of trichoverroids and their macrolide analogues
produced by saltwater culture of Myrothecium verrucaria. J Med Chem. 2003,-v. 46, -p.
4342–4350.
76. Bondy G. S., Pestka J. J., Immunomodulation by fungal toxins. J Toxicol Environ
Health B Crit Rev. 2000, -v. 3, -p. 109–143.
77. Abbas H. K., Johnson B. B., Shier W. T., Tak H, Jarvis B. B., Boyette C. D.,
Phytotoxicity and mammalian cytotoxicity of macrocyclic trichothecene mycotoxins from
Myrothecium verrucaria. Phytochemistry. 2002, 59, -p.309–313.
78. Shimada A., Takeuchi S., Kusano M., Fujioka S., Kimura Y., Roridin. and verrucarin
A, inhibitors of pollen development in Arabidopsis thaliana, produced by Cylindrocarpon
sp. Plant Sci. 2004, -v. 166, -p.1307–1312.
79. Andol? A., Boari A., Evidente A., Vurro M., Metabolites inhibiting germination of
Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric
Food Chem. 2005, -v. 53, -p.1598–1603.
80. Nielsen K. F., Grafenhan T., Zafari D., Thrane U., Trichothecene production by
Trichoderma harzianum brevicompactum. J Agric Food Chem. 2005, -v. 53, -p.8190–8196.
81. Iordanov M. S., Pribnow D., Magun J. L., Dinh T. H., Pearson J. A., Chen S. L.,
Magun B. E., Ribotoxic stress response: activation of the stress-activated protein kinase
JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA
damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol. 1997, -v. 17, -
p.3373–3381.
82. Kinser S., Li M., Jia QS., Pestka J. J., Truncated deoxynivalenol-induced splenic
immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. J Nutr
Biochem. 2005, -v. 16, -p. 88–95.
83. McCormick S. P., Harris L. J., Alexander N. J., Ouellet T., Saparno A., Allard S.,
Desjardins AETri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ
Microbiol. 2004. -v. 70, -p.2044–2051.
84. Pestka J. J., Zhou H. R., Moon Y., Chung Y. J., Cellular and molecular mechanisms
for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox.
Toxicol Lett. 2004, -v. 153, -p.61–73.
85. Chung Y. J., Jarvis B. B., Tak H., Pestka J. J., Immunochemical assay for
satratoxin G and other macrocyclic trichothecenes associated with indoor air contamination
by Stachybotrys chartarum. Toxicol Mech Methods. 2003, -v. 13, -p.247–252.
86. EI-Kady I. A., Moubasher M. H., Some cultural conditions that control production
of roridin E and satratoxin H by Stachybotrys chartarum. Crypto Mycol. 1982, -v.137, -
p.151–162.
87. Croft W. A., Jarvis B. B., Yatawara C. S., Airborne outbreak of trichothecene
toxicosis. Atmos Environ, 1986.-v. 20:-p.549–552.
88. Jarvis B. B., Stachybotrys chartarum: a fungus for our time. Phytochemistry.
2003, -v. 64, -p.53–60.
89. Yike I, Miller M. J., Sorenson W. G., Walenga R J. F., Tomashefski J. R., Dearborn
D. G., Infant animal model of pulmonary mycotoxicosis induced by Stachybotrys chartarum.
Mycopathologia. 2001, -v.154, -p.139–152
90. Giocobbe R. A., Huang L., Kong Y. L., Lam Y. T., Del Val S. M., Wichman C. F.,
Zink D. L., Drug for treating manic depression. Merck &Co., Inc, USA Gottschalk C, Bauer
J, Meyer K Detection of satratoxin G and H in indoor air from a water-damaged building.
Mycopathologia. 2008, -v. 166, -p.103–107.
91. Eppley R. M., Mazzola E. P., Highet R. J., Bailey W. J., Structure of satratoxin
H, a metabolite of Stachybotrys atra. Application of proton and carbon-13 nuclear magnetic
resonance. J Org Chem. 1977, - v. 42, -p.240–243.
92. Andersen B., Nielsen K. F., Jarvis B. B., Characterization of Stachybotrys from
water-damaged buildings based on morphology, growth, and metabolite production. Mycologia.
2002, -v. 94, -p.392–403.
93. Tuomi T., Reijula K., Johnsson T., Hemminki K., Hintikka E. L., Lindroos O
Mycotoxins in crude building materials from water-damaged buildings. Appl Environ
Microbiol. 2000, -v. 66, -p.1899–1904.
94. Nielsen K. F., Huttunen K., Hyvarinen A., Andersen B., Jarvis B. B., Hirvonen M.
R., Metabolite profiles of Stachybotrys spp. isolates from water damaged buildings and
their capability to induce cytotoxicity and production of inflammatory mediators in RAW
264.7 macrophages. Mycopathologia. 2001, -v. 154, -p.201–205.
95. Hinkley S. F., Jarvis B. B., Chromatograghic method for Stachybotrys toxins. In:
Truchsess MW, Pohland AE (eds) Mycotoxin protocols. Human press, Totowa N.J. 2001, -p.
173–194.
96. Bae H. K., Shinozuka J., Islam Z., Pestka J. J., Satratoxin G interaction with 40S
and 60S ribosomal subunits precedes poptosis in the macrophage. Toxicol Appl Pharmacol.
2009, -v. 37, -p.137–145.
97. Hastings C., Rand T., Bergen H. T., Thliveris J. A., Shaw A. R., Lombaert G. A.,
Mantsch H. H., Giles B. L., Dakshinamurti S., Scott J. E., Trichoderma harzianum 22alters
surfactantrelated phospholipid synthesis and CTP: cholinephosphate cytidylyltransferase
activity in isolated fetal rat type II cells. Toxicol Sci. 2005, -v. 84, -p.186–194.
98. Hudson B., Flemming J., Sun G., Rand T. G., Comparison of immunomodulator mRNA and
protein expression in the lungs of Trichoderma harzianum 22spore-exposed mice. J Toxicol
Environ Health. 2005, -v. 68, -p. 1321–1335.
99. Kankkunen P., Rintahaka J., Aalto A., Leino M., Majuri M. L., Alenius H., Wolff
H., Matikainen S., Trichothecene mycotoxins activate inflammatory response in human
macrophages. J Immunol. 2009, -v.182, -p. 6418–6425.
100. McCrae K. C., Rand TG., Shaw R. A., Mantsch H. H., Sowa M. G., Thliveris J. A.,
Scott J. E., () DNA fragmentation in developing lung fibroblasts exposed to Trichoderma
harzianum 22(atra) toxins. Pediatr Pulmonol. -2007, -v.42, -p.592–599.
101. Shi Y., Porter K., Parameswaran N., Bae H. K., Pestka J. J., Role of GRP78/BiP
degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the
macrophage. Toxicol Sci.- 2009, -v.109, -p.247–255.
102. Yike I., Rand T., Dearborn D. G., The role of fungal proteinases in
pathophysiology of Stachybotrys chartarum. Mycopathologia. 2007, -v.164, -p.171–181.
103. Takahashi-Ando N., Matsui K., Suzuki T., Sadamatsu K., Azuhata H., Okada A.,
Trichothecene biosynthesis in di?erent fungal genera: resistance mechanisms, pathway
enzymes, and their product applications. JSM Mycotoxins., 2020,-v. 70, -p.67–74.
104. Shi Z. Z., Liu X. H., Li X. N., and Ji N. Y., Antifungal and antimicroalgal
trichothecene sesquiterpenes from the marine algicolous fungus Trichoderma harzianum
brevicompactum A-DL-9-2. J. Agric. Food Chem., 2020, -v. 68, -p. 15440–15448.
105. Yamazaki H., Yagi A., Takahashi O., Yamaguchi Y., Saito A., Namikoshi M.,
Antifungal trichothecene sesquiterpenes obtained from the culture brothof marine-derived
Trichoderma harzianum cf. brevicompactum and their structure- activity relationship.
Bioorg. Med. Chem. Lett., 2020b, -v.30, -p.127375.
106. Yin M., Fasoyin O. E., Wang C., Yue Q., Zhang Y., Dun B., Herbicidal e?cacy of
harzianums produced by the biofertilizer fungus, Trichoderma harzianum brevicompactum.
AMB Express., 2020, -v. 10, -p.118.
107. Cui J., Shang R. Y., Sun M., Li Y. X., Liu H. Y., Lin H. W. Trichoderma harzianum
loids A-C, cadinane sesquiterpenes from a marine sponge symbiotic Trichoderma harzianum
sp. SM16 fungus. Chem. Biodivers., 2020, -v.17, -p. e2000036.
108. Shi T., Shao C. L., Liu Y., Zhao D. L., Cao F., Fu X. M. Terpenoids from the
coral-derived fungus Trichoderma harzianum harzianum (XS-20090075) induced by chemical
epigenetic manipulation. Front. Microbiol., 2020, -v.11, -p.572.
109. Liu X. H., Hou X. L., Song Y. P., Wang B. G., and Ji N. Y. Cyclonerane
sesquiterpenes and anisocoumarinderivative from the marine-alga-endophytic fungus
Trichoderma harzianum citrinoviride A-WH-20-3. Fitoterapia., 2020, -v.141, -p.104469.
110. Song Y. P., Fang S. T., Miao F. P., Yin X. L., and Ji N. Y. Diterpenes and
sesquiterpenes from the marine algicolous fungus Trichoderma harzianum harzianum X-5. J.
Nat. Prod., 2018, -v.81, -p.2553–2559.
111. Speck K., Magauer T., The chemistry of isoindole natural products. J Org Chem.
2013, -v. 9, -p.2048–2078.
112. Geris R., Simpson T. J., Meroterpenoids produced by fungi. Nat Prod Rep. 2009.-v.
26, -p.1063–1094.
113. Li Y., Wu C. M., Liu D., Proksch P., Guo P., Lin W. H., Chartarlactams A-P,
phenylspirodrimanes from the sponge-associated fungus Trichoderma harzianum 22with
antihyperlipidemic activities. J Nat Prod. 2014a.-v. 77, -p.138–147.
114. Kaise H., Shinohara M., Miyazaki W., Izawa T., Nakano Y., Sugawara M., Sugiura K.,
Structure of K-76, a complement inhibitor produced by Stachybotrys complementi, nov. sp.
K-76. J Chem Soc Chem Commun. 1979.-v.79, -p.726–727.
115. Miyazaki W., Tamaoka H., Shinohara M., Kaise H., Izawa T., Nakano Y., Kinoshita
T., Hong K., Inoue K., A complement inhibitor produced by Stachybotrys complementi, now.
sp. K-76, a new species of fungi imperfecti. Microbiol Immunol. 1980.-v. 24, -p.1091–
1108.
ILOVALAR
3.58. rasm. Gibberillin A3 ning IQ spektri
3.59. rasm. Gibberillin A3 ning mass-spektri
.
3.60. rasm.Gibberillin A3 ning 1N YAMR-spektri
3.61. rasm.Gibberillin A3 ning 13S YAMR-spektri
3.62. rasm. Indol sirka kislotaning IQ spektri
3.63. rasm. Indol sirka kislota ning mass- spektri
3.64. rasm. Indol sirka kislota ning 1H YAMR- spektri
3.65. rasm. Indol sirka kislota ning 13S YAMR- spektri
3.52. rasm. 2,3-digidro-1,4-benzpiranol-4 mass – spektri
3.53. rasm. 2,3-digidro-1,4-benzpiranol-4 1N YAMR spektri
3.54. rasm. 2,3-digidro-1,4-benzpiranol-4 13S YAMR spektri
3.55. rasm. Ergosterolning IQ spektri
3.56. rasm. Ergosterolning mass – spektri
3.57. rasm. Ergosterolning 13S YAMR- spektri
3.33. rasm. 5-[(2-metoksifenoksi) metil]-1,3-oksazolidin-2-on
mass – spektri
3.34. rasm. 5-[(2-metoksifenoksi) metil]-1,3-oksazolidin-2-on
1N YAMR – spektri
3.35. rasm. 5-[(2-metoksifenoksi) metil]-1,3-oksazolidin-2-on 13S YAMR – spektri
Do'stlaringiz bilan baham: |