226
Yaqinlashish sohasini
Koshi alomatidan foydalanib, topamiz:
1
2
1
25
1
25
1
2
lim
lim
2
2
2
2
x
x
n
n
x
u
n
n
n
n
n
n
n
bo`lsa,
yaqinlashadi.
5
1
;
5
1
5
1
25
1
2
x
x
x
da
qator
yaqinlashadi. Chegaraviy
5
1
x
nuqtada esa
1
5
1
2
2
n
n
u
n
bo`lib,
0
1
1
lim
1
lim
2
2
n
n
n
u
n
n
n
qator yaqinlashishining zaruriy sharti bajarilmaydi
yaqinlashish
sohasi
5
1
;
5
1
interval ekan.
6.21-masala. Ushbu
1
3
3
2
3
27
n
n
n
n
x
arctg
x
funksional qatorning yaqinlashish sohasini toping.
Bu qatorning yaqinlashish sohasini Dalamber alomatidan
foydalanib, topamiz:
1
27
3
3
2
5
2
3
lim
27
3
2
3
27
5
2
3
27
lim
lim
3
3
3
3
3
1
1
x
x
n
n
x
x
n
x
arctg
x
n
x
arctg
x
x
u
x
u
n
n
n
n
n
n
n
n
n
bo`lsa yaqinlashadi.
3
1
x
yoki
3
1
;
3
1
x
da yaqinlashadi.
Chegaraviy nuqtalarda tekshiramiz.
1)
3
1
x
bo`lsin
3
2
1
0
3
2
1
3
1
*
n
n
arctg
u
n
va
1
3
2
1
n
n
uzoqlashuvchi
berilgan qator
3
1
x
nuqtada uzoqlashadi.
2)
3
1
x
bo`lsin
3
2
1
1
3
1
1
n
arctg
u
n
n
va
1
1
3
2
1
1
n
n
n
arctg
qator Lebnis alomatiga ko`ra
yaqinlashuvchi
berilgan qator
3
1
x
nuqtada yaqinlashuvchi.
227
Demak, berilgan funksional qatorning
yaqinlashish sohasi
3
1
;
3
1
yarim interval.
7.21-masala. Berilgan
.
3
1
1
1
ln
2
n
n
x
n
n
qatorning yaqinlashish sohasini toping.
Koshi alomatiga ko`ra
1
3
3
lim
lim
1
ln
x
n
x
n
n
n
n
n
x
u
bo`lsa, ya`ni
0
x
bo`lganda berilgan qator yaqinlashadi. Chegaraviy
0
x
nuqtada
n
n
u
1
0
bo`lib,
1
1
n
n
qator uzoqlashadi.
Demak, berilgan qatorning yaqinlashish sohasi
,
0
oraliqda iborat
ekan.
8.21-masala.
.
3
2
ln
2
1
1
2
n
n
x
n
n
funksional qatorning
yaqinlashish sohasini toping.
Qo`yilgan
masalani Dalamber alomatidan foydalanib yechamiz.
Agar
1
3
1
3
3
ln
3
3
2
ln
2
lim
lim
2
2
2
2
1
x
x
n
n
x
n
n
x
u
x
u
n
n
n
n
n
n
bo`lsa,
unda
berilgan
funksional
qator
yaqinlashadi
;
4
2
;
1
3
1
3
2
x
x
x
to`plamda berilgan qator
yaqinlashadi. Chegaraviy
2
x
va
4
x
nuqtalarda
2
ln
2
1
n
n
x
u
n
bo`lib,
1
2
ln
2
1
n
n
n
sonli qator Koshining integral alomatiga ko`ra
uzoqlashadi
Berilgan funksional qatorning yaqinlashish sohasi
;
4
2
;
to`plamdan iborat.
9.21-masala. Ta`rifdan foydalanib
1
.
13
7
1
n
n
n
n
x
228
funksional qatorning
1
;
0
kesmada tekis yaqinlashishini isbotlang
?
0
n
.
n
ning qanday qiymatlrida qatorning qoldig`i
1
,
0
x
uchun 0, 1 dan katta bo`lmaydi?
Bu masalani yechish
uchun
0
olinganda ham
N
n
n
0
0
topishimiz kerakki,
0
n
n
va barcha
1
,
0
x
uchun
x
u
x
r
n
k
k
n
tengsizlik bajarilishi lozim.
0
son
olamiz
va quyidagi baholashlarni amalga oshiramiz:
..
13
2
7
1
13
1
7
1
13
7
1
13
7
1
2
2
1
1
n
x
n
x
n
x
k
x
x
u
x
r
n
n
n
n
n
n
n
k
k
k
n
k
k
n
...
13
4
7
1
13
3
7
1
13
2
7
1
13
1
7
1
13
7
1
1
n
n
n
n
n
x
n
n
0
13
1
7
1
13
1
7
1
13
7
13
7
1
13
7
n
n
n
n
n
x
n
olinganda ham
13
1
7
1
0
n
deb olsak,
0
n
n
va
1
,
0
x
lar
uchun
n
k
k
x
u
tengsizlik bajariladi. Bu esa
1
13
7
1
n
n
n
n
x
funksional
qator
1
,
0
kesmada tekis yaqinlashishini anglatadi.
Masalaning ikkinchi qismini yechish uchun
1
,
0
deyish kifoya
3
7
23
13
1
,
0
1
7
1
0
n
barcha
3
n
lar uchun
1
,
0
x
r
n
bo`ladi.
10.21-masala.
1
2
1
2
2
n
n
n
n
x
funksional qator uchun uni
3
;
1
kesmada majorirlovchi qatorni toping va ko`rsatilgan oraliqda tekis
yaqinlashishini isbotlang.
3
,
1
x
uchun
n
n
n
n
n
n
x
x
u
2
1
2
1
2
1
2
2
bo`lib,
n
n
n
a
2
1
2
1
desak,
1
1
2
1
2
1
n
n
n
n
n
a
sonli qator berilgan qator
uchun uni majorirlovchi qator bo`ladi.
1
n
n
a
qator yaqinlashuvchi bo`lgani
229
uchun Veyershtrass alomatiga ko`ra berilgan
1
2
1
2
2
n
n
n
n
x
Do'stlaringiz bilan baham: