15.12
.
1
0
2
n
n
x
n
n
15.13
.
1
2
0
2
n
n
x
n
n
15.14
.
4
5
3
1
0
2
n
n
x
n
n
15.15
.
4
7
0
2
n
n
x
n
n
15.16
.
2
2
1
0
2
n
n
x
n
n
15.17
.
1
2
2
0
2
n
n
x
n
n
15.18
.
1
2
1
0
2
n
n
x
n
n
15.19
.
2
2
2
0
2
n
n
x
n
n
15.20
.
3
4
1
0
2
n
n
x
n
n
15.21
.
4
5
2
0
2
n
n
x
n
n
16-masala.
Integral ostidagi funksiyani qatorga yoyish yordamida berilgan
integralni hisoblang.
16.1
1
0
.
1
1
ln
dx
x
16.2
1
0
.
1
ln
ln
dx
x
x
16.3
0
2
.
1
dx
e
x
x
16.4
0
.
1
x
e
xdx
16.5
1
0
2
.
1
ln
dx
x
x
x
Darajali qatorlar yordamida quyidagi differensial tenglamaning
berilgan boshlang`ich shartlarni qanoatlantiruvchi yechimini toping.
223
16.6
.
1
0
,
0
y
y
y
16.7
.
0
0
,
0
1
1
2
y
y
x
16.8
0
,
1
0
,
0
2
y
y
y
y
16.9
0
0
,
1
0
,
0
y
y
xy
y
16.10
1
0
,
0
0
,
0
1
2
y
y
y
x
y
x
16.11
0
0
,
1
0
,
0
4
5
1
2
y
y
y
y
x
y
x
16.12
1
0
,
0
0
,
0
y
y
xy
y
Integral ostidagi funksiyani darajali qatorga yoyish usuli
yordamida berilgan integralni 0,001 aniqlikda hisoblang.
16.13
1
0
.
sin
dx
x
x
16.14
1
0
3
.
cos
xdx
x
16.15
1
0
2
.
sin
dx
x
16.16
1
0
4
.
1
x
dx
16.17
4
2
1
.
dx
e
x
16.18
2
1
0
.
dx
x
arctgx
16.19
3
1
0
3
2
.
1
x
dx
16.20
10
5
2
2
.
1
ln
dx
x
x
16.21
1
0
.
2
dx
e
x
-C-
Namunaviy variant yechimi.
1.21-masala. Ushbu
x
x
n
e
n
e
n
x
f
2
4
2
3
ln
funksional ketma-
ketlikning
;
0
M
to`plamdagi limit funksiyasini toping.
ln
lim
lim
n
n
n
x
f
x
f
x
x
n
x
x
e
n
e
n
e
n
e
n
2
4
2
2
4
2
3
1
ln
lim
3
ln
3
.
3
ln
0
1
3
ln
3
lim
3
3
1
ln
lim
3
ln
2
4
2
2
4
2
2
4
2
x
x
n
x
x
x
x
n
e
n
e
n
e
n
e
n
e
n
e
n
224
2.21-masala.
nx
x
n
x
n
x
f
n
funksional ketma-ketlikni a)
x
0
b)
1
0
x
oraliqlarda tekis yaqinlashishga tekshiring.
Ikkala oraliqda ham
x
f
n
ketma-ketlik yaqinlashuvchi bo`lib,
1
1
1
lim
lim
lim
n
x
n
x
n
x
nx
x
n
x
n
x
f
x
f
n
n
n
n
bo`ladi. Endi tekis yaqinlashishga tekshirish uchun
0
1
-punktdagi 1-
teoremadan foydalanamiz.
nx
x
n
nx
nx
x
n
x
n
x
f
x
f
x
r
n
n
1
deb belgilasak, 1-teoremaga ko`ra
x
f
n
ketma-ketlik M to`plamda tekis
yaqinlashishi uchun ushbu
0
lim
x
r
Sup
n
M
x
n
munosabatning bajarilishi zarur va yetarli.
a)
x
0
bo`lsin.
n
r
x
r
Sup
nx
x
n
x
x
n
n
x
r
n
n
x
n
,
0
2
3
1
3
n
n
n
n
n
n
n
n
.
1
0
3
1
lim
,
0
x
f
x
r
Sup
n
n
x
n
b)
1
0
x
bo`lsin. Bu oraliqda
0
x
r
n
bo`lgani uchun
0
1
lim
lim
1
1
1
0
1
0
n
n
n
x
r
Sup
n
n
n
r
x
r
Sup
x
r
n
n
x
n
n
n
x
n
x
f
n
funksional ketma-ketlik 1 ga tekis yaqinlashmaydi.
Demak, berilgan funksional ketma-ketlik
x
0
toplamda
notekis,
1
0
x
to`plamda esa tekis yaqinlashar ekan.
3.21-masala.
Veyershtrass
alomatidan
foydalanib,
1
2
1
ln
1
ln
n
n
n
x
funksional qatorning
2
0
x
oroliqda tekis
yaqinlashishini ko`rsating.
225
1
ln
1
ln
2
n
n
x
x
u
n
Berilgan
2
0
x
oraliqda quyidagi
tengsizliklar o`rinli.
.
1
ln
2
1
ln
1
ln
1
ln
1
ln
1
ln
2
2
2
2
n
n
n
n
x
n
n
x
n
n
x
x
u
n
Agar
1
ln
2
2
n
n
a
n
deb belgilasak, Koshining integral alomatiga
ko`ra
1
1
2
1
ln
1
n
n
n
n
n
a
sonli qator yaqinlashuvchi bo`ladi. Unda
Veyershtras alomatiga ko`ra berilgan funksional qator
2
0
x
oraliqda
tekis yaqinlashuvchi.
4.21-masala. Berilgan ushbu
1
2
2
2
2
1
...
4
1
2
1
n
nx
x
x
n
funksional qatorning
x
1
oraliqda tekis yoki notekis
yaqinlashuvchiligini aniqlang.
Bu qatorning tekis yaqinlashishini tekshirish uchun 2
0
-punktdagi
1-teoremadan, ya`ni (10)-tenglikdan foydalanamiz.
2
2
2
2
1
...
4
1
2
1
nx
x
x
n
x
u
n
,...
3
,
2
,
2
1
...
4
1
2
1
1
1
2
1
...
4
1
2
1
1
2
1
2
2
2
2
2
2
2
n
nx
x
x
x
n
x
x
x
va
n
k
k
n
nx
x
x
x
x
u
x
S
x
x
x
u
1
2
2
2
2
2
2
1
2
1
...
4
1
2
1
1
1
2
1
2
1
1
1
2
1
,
1
x
uchun
2
2
1
lim
x
x
S
x
S
n
n
va
x
S
x
S
x
r
n
n
n
x
r
Sup
nx
x
x
n
x
2
1
...
4
1
2
1
1
2
1
...
4
1
2
1
1
,
1
2
2
2
0
lim
,
1
x
r
Sup
n
x
n
Do'stlaringiz bilan baham: |