224
2.21-masala.
nx
x
n
x
n
x
f
n
funksional ketma-ketlikni a)
x
0
b)
1
0
x
oraliqlarda tekis yaqinlashishga tekshiring.
Ikkala oraliqda ham
x
f
n
ketma-ketlik yaqinlashuvchi bo`lib,
1
1
1
lim
lim
lim
n
x
n
x
n
x
nx
x
n
x
n
x
f
x
f
n
n
n
n
bo`ladi. Endi tekis yaqinlashishga
tekshirish uchun
0
1
-punktdagi 1-
teoremadan foydalanamiz.
nx
x
n
nx
nx
x
n
x
n
x
f
x
f
x
r
n
n
1
deb belgilasak, 1-teoremaga ko`ra
x
f
n
ketma-ketlik M to`plamda tekis
yaqinlashishi uchun ushbu
0
lim
x
r
Sup
n
M
x
n
munosabatning bajarilishi zarur va yetarli.
a)
x
0
bo`lsin.
n
r
x
r
Sup
nx
x
n
x
x
n
n
x
r
n
n
x
n
,
0
2
3
1
3
n
n
n
n
n
n
n
n
.
1
0
3
1
lim
,
0
x
f
x
r
Sup
n
n
x
n
b)
1
0
x
bo`lsin. Bu oraliqda
0
x
r
n
bo`lgani uchun
0
1
lim
lim
1
1
1
0
1
0
n
n
n
x
r
Sup
n
n
n
r
x
r
Sup
x
r
n
n
x
n
n
n
x
n
x
f
n
funksional ketma-ketlik 1 ga tekis yaqinlashmaydi.
Demak, berilgan funksional ketma-ketlik
x
0
toplamda
notekis,
1
0
x
to`plamda esa tekis yaqinlashar ekan.
3.21-masala.
Veyershtrass
alomatidan
foydalanib,
1
2
1
ln
1
ln
n
n
n
x
funksional qatorning
2
0
x
oroliqda tekis
yaqinlashishini ko`rsating.
225
1
ln
1
ln
2
n
n
x
x
u
n
Berilgan
2
0
x
oraliqda
quyidagi
tengsizliklar o`rinli.
.
1
ln
2
1
ln
1
ln
1
ln
1
ln
1
ln
2
2
2
2
n
n
n
n
x
n
n
x
n
n
x
x
u
n
Agar
1
ln
2
2
n
n
a
n
deb belgilasak, Koshining
integral alomatiga
ko`ra
1
1
2
1
ln
1
n
n
n
n
n
a
sonli qator yaqinlashuvchi bo`ladi. Unda
Veyershtras alomatiga ko`ra berilgan funksional qator
2
0
x
oraliqda
tekis yaqinlashuvchi.
4.21-masala. Berilgan ushbu
1
2
2
2
2
1
...
4
1
2
1
n
nx
x
x
n
funksional qatorning
x
1
oraliqda tekis yoki notekis
yaqinlashuvchiligini aniqlang.
Bu qatorning tekis yaqinlashishini tekshirish uchun 2
0
-punktdagi
1-teoremadan, ya`ni (10)-tenglikdan foydalanamiz.
2
2
2
2
1
...
4
1
2
1
nx
x
x
n
x
u
n
,...
3
,
2
,
2
1
...
4
1
2
1
1
1
2
1
...
4
1
2
1
1
2
1
2
2
2
2
2
2
2
n
nx
x
x
x
n
x
x
x
va
n
k
k
n
nx
x
x
x
x
u
x
S
x
x
x
u
1
2
2
2
2
2
2
1
2
1
...
4
1
2
1
1
1
2
1
2
1
1
1
2
1
,
1
x
uchun
2
2
1
lim
x
x
S
x
S
n
n
va
x
S
x
S
x
r
n
n
n
x
r
Sup
nx
x
x
n
x
2
1
...
4
1
2
1
1
2
1
...
4
1
2
1
1
,
1
2
2
2
0
lim
,
1
x
r
Sup
n
x
n
Do'stlaringiz bilan baham: