4-§. Taqribiy hisoblashlarda differensialning qo‘llanilishi.
Yuqorida ta’kidlaganimizdek, x0 nuqtada differensiallanuvchi y=f(x) funksiya uchun ∆y≈f’(x0)dx, ya’ni ∆y≈dy taqribiy tenglik o‘rinli. Shu taqribiy tenglik matematik analizning nazariy va tatbiqiy masalalarida muhim ahamiyatga ega bo‘lib, differensialning mohiyatini belgilaydi. Yuqoridagi tenglikda ∆y=f(x)f(x0), ∆x=x-x0 deb olsak, quyidagi tenglikka ega bo‘lamiz:
f(x)-f(x0) ≈f’(x0)( x-x0) yoki
f(x) ≈ f(x0)+f’(x0)( x-x0) (4.1)
(4.1) formula funksiya qiymatlarini taqribiy hisoblashda keng qo‘llaniladi.
Masalan, f(x)= x funksiya uchun quyidagi x (4.2)
formula o‘rinli. Agar f(x)= x funksiyaning x=0,98 dagi qiymatini hisoblash talab qilinsa, (4.2) formulada x=1, ∆x=-0,02 deb olish yyetarli. U holda bo‘ladi. Agar 0,98 kalkulyatorda hisoblasak,
uni 10-6 aniqlikda 0,989949 teng ekanligi ko‘rish mumkin. Demak, differensial yordamida hisoblaganda xatolik 0,001 dan katta emas. Umumiy holda differensial yordamida taqribiy hisoblashlardagi xatolikni baholash masalasini kelgusida o‘rganamiz.
5-§. Funksiyaning yuqori tartibli differensiallari
1. Yuqori tartibli differensiallar.
Faraz qilaylik y=f(x) funksiya biror (a,b) intervalda berilgan bo‘lsin. Bu funksiyaning dy=f’(x)dx differensiali x ga bog‘liq bo‘lib, dx=∆x va ∆x orttirma x ga bog‘liq emas, chunki x nuqtadagi orttirmani x ga bog‘liq bo‘lmagan holda ixtiyoriy tanlash mumkin. Bu holda differensial formulasidagi dx ko‘paytuvchi o‘zgarmas bo‘ladi va f’(x)dx ifoda faqat x ga bog‘liq bog‘liq bo‘lib, uni x bo‘yicha differensiallash mumkin.
Demak, bu funksiyaning differensiali mavjud bo‘lishi mumkin va u, agar mavjud bo‘lsa, funksiyaning ikkinchi tartibli differensiali deb ataladi.
Ikkinchi tartibli differensial d2y yoki d2f(x) kabi belgilanadi. Shunday qilib, ikkinchi tartibli differensial quyidagicha aniqlanar ekan: d2y=d(dy).
Berilgan y=f(x) funksiyaning ikkinchi tartibli differensiali ifodasini topish uchun dy=f’(x)dx formulada dx ko‘paytuvchi o‘zgarmas deb qaraymiz. U holda d2y=d(dy)=d(f’(x)dx)=d(f’(x))dx=(f’’(x)dx)dx=f’’(x)(dx)2
bo‘ladi. Biz kelgusida dx ning darajalarini havssiz yozishga kelishib olamiz. Bu kelishuvni e’tiborga olsak, (dx)2=dx2 bo‘ladi va ikkinchi tartibli differensial uchun quyidagi ifodani hosil qilamiz:
d2y=f’’(x)dx2 (5.1)
Shunga o‘xshash, uchinchi tartibli differensialni ta’riflash va uning uchun ifodasini keltirib chiqarish mumkin: d3y=d(d2y)=d(f’’(x)dx2)=f’’’(x)dx3.
Umumiy holda funksiyaning (n-1)-tartibli differensiali dn-1y dan olingan differensial funksiyaning n-tartibli differensiali deyiladi va dny kabi belgilanadi, ya’ni dny=d(dn-1y). Bu holda ham funksiyaning n-tartibli differensiali uning ntartibli hosilasi orqali quyidagi
dny=f(n)(x)dxn (5.2)
ko‘rinishda ifodalanishini isbotlash mumkin.
Yuqoridagi formuladan funksiyaning n-tartibli hosilasi uning n-tartibli differensiali va erkli o‘zgaruvchi differensialining n-darajasi nisbatiga teng ekanligi kelib chiqadi:
f(n)(x)= dny/ dxn.
Do'stlaringiz bilan baham: |