R. M. Turgunbaev matematik analiz


Differensial hisobning asosiy teoremalari va tatbiqlari 1-§. O‘rta qiymat haqidagi teoremalar



Download 1,58 Mb.
bet28/48
Sana13.06.2022
Hajmi1,58 Mb.
#661339
1   ...   24   25   26   27   28   29   30   31   ...   48
Bog'liq
R. M. Turgunbaev matematik analiz

Differensial hisobning asosiy teoremalari va tatbiqlari 1-§. O‘rta qiymat haqidagi teoremalar


Matematik analiz kursida o‘rganiladigan asosiy va amaliy masalalarni yechishda katta ahamiyatga ega bo‘lgan funksiyalar sinflaridan (to‘plamlaridan) biri-bu uzluksiz funksiyalar sinfi hisoblanadi. Oldingi bobda biz differensiallanuvchi funksiyalar sinfi uzluksiz funksiyalar sinfining qismi bo‘lishini ko‘rsatgan edik. Differensiallanuvchi funksiyalar o‘ziga xos ahamiyatga ega, chunki ko‘pgina tatbiqiy masalalarni yechish hosilasi mavjud funksiyalarni o‘rganishga keltiriladi. Bunday funksiyalar ba’zi bir umumiy xossalarga ega. Bu xossalar ichida o‘rta qiymat haqidagi teoremalar nomi bilan birlashgan teoremalar alohida ahamiyatga ega. Ushbu teoremalar [a;b] kesmada o‘rganilayotgan funksiya uchun u yoki bu xossaga ega bo‘lgan [a;b] kesmaga tegishli s nuqtaning mavjudligini ta’kidlaydi.
1. Ferma teoremasi
Teorema. Agar f(x) funksiya (a,b) oraliqda aniqlangan va biror ichki c nuqtada eng katta (eng kichik) qiymatga erishsa va shu nuqtada chekli f’(c) hosila mavjud bo‘lsa, u holda f’(c)=0 bo‘ladi.
Isbot. f(c) funksiyaning eng katta qiymati bo‘lsin, ya’ni ∀x(a;b) da f(x) ≤ f(c) tengsizlik o‘rinli bo‘lsin. Shartga ko‘ra bu s nuqtada chekli f’(c) hosila mavjud.
Ravshanki,
f'( c ) = lim f (x)− f (c)= lim f (x)− f (c)= lim f (x)− f (c) xc x c xc−0 x c xc+0 x c
Ammo x bo‘lganda f va x>s bo‘lganda
f f' ( c ) ≤0 bo‘lishidan f’(c)=0 ekani kelib chiqadi.
Eng kichik qiymat holi shunga o‘xshash isbotlanadi.
F erma teoremasi sodda geometrik ma’noga ega. U f(x) funksiya grafigiga (c;f(c)) nuqtada o‘tkazilgan urinmaning Ox o‘qiga paralell bo‘lishini ifodalaydi ( 19-rasm).
1- eslatma. Ichki s nuqtada f’(s)=0 bo‘lsa ham bu nuqtada f(x) funksiya eng katta (eng kichik) qiymatni qabul qilmasligi mumkin. Masalan,
f(x)=2x3-1, x(-1;1) da berilgan bo‘lsin. Bu
funksiya uchun f’(0)=0 bo‘ladi, lekin 19-rasm
f(0)=-1 funksiyaning (-1;1) dagi eng katta yoki eng kichik qiymati
bo‘lmaydi.

Download 1,58 Mb.

Do'stlaringiz bilan baham:
1   ...   24   25   26   27   28   29   30   31   ...   48




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish