Haqiqatga maksimal o‘xshashlik usuli
Kuzatilmalari lardan va umumlashgan zichlik funksiyasi dan iborat t.m.ni olaylik. Agar diskret t.m. bo‘lsa, ehtimolliklardan, uzluksiz t.m. bo‘lgan holda esa zichlik funksiyadan iborat bo‘ladi. Quyidagi funksiyaga haqiqatga maksimal o‘xshashlik funksiyasi deyiladi. Faraz qilaylik, funksiya yopiq sohada biror nuqtada eng katta qiymatga erishsin:
.
Haqiqatga maksimal o‘xshashlik funksiyasi eng katta qiymatga erishadigan qiymat noma’lum parametr uchun haqiqatga maksimal o‘xshashlik usuli bilan tuzilgan statistik baholar deb ataladi. Ularni quyidagi tenglamalar sistemasidan ham topish mumkin:
(7)
(7) tenglamalar sistemasi haqiqatga maksimal o‘xshashlik tenglamalari deyiladi.
Ko‘p hollarda (7) tenglamalar sistemasi o‘rniga quyidagi tenglamar sistemasini yechish qulay bo‘ladi:
(8)
3-misol. Matematik kutilmasi va dispersiyasi noma’lum bo‘lgan, zichlik funksiyasi bo‘lgan normal qonunni olaylik. Haqiqatga maksimal o‘xshashlik funksiyasini tuzamiz:
Bundan
Avval (6) sistemaning birinchi tenglamasini qaraylik:
.
Soddalashtirgandan so‘ng tenglamaga kelamiz.
Endi (6) sistemaning ikkinchi tenglamasini tuzamiz:
.
Soddalashtirgandan so‘ng tenglamaga kelamiz.
Natijada va lar uchun
Ko‘rinishdagi statistik baholarni topamiz.
Demak, normal qonun uchun momentlar va haqiqatga maksimal o‘xshashlik usullari bilan tuzilgan statistik baholar aynan bir xil ekan.
Ishonchlilik oralig‘i
Oldinda biz noma’lum parametrlarning nuqtaviy statistik baholari bilan tanishdik. Tuzilgan nuqtaviy baholar tanlanmaning aniq funksiyalari bo‘lgan to’plam bo‘lib, ular noma’lum parametrlarning asl qiymatiga yaqin bo‘lgan nuqtani aniqlab beradi xolos. Ko‘p masalalarda noma’lum parametrlarni statistik baholash bilan birgalikda bu bahoning aniqligini, ishonchliligini topish talab etiladi. Matematik statistikada statistik baholarning aniqligini topish ishonchlilik oralig‘i va unga mos ishonchlilik ehtimolligi orqali hal etiladi.
Faraz qilaylik, tanlanma yordamida noma’lum θ parametr uchun siljimagan T( ) baho tuzilgan bo‘lsin. Tabiiyki │T( ) – θ│ ifoda noma’lum θ parametr bahosining aniqlik darajasini belgilaydi. T( ) statistik bahoning noma’lum θ parametrga qanchalik yaqinligini aniqlash masalasi qo‘yilsin. Oldindan biron-bir β (0<β<1)- sonni 1 ga yetarlicha yaqin tanlab qo‘yaylik. Endi quyidagi
Ρ{│ T( ) – θ │<δ}=β
munosabat o‘rinli bo‘ladigan δ>0 sonini topish lozim bo‘lsin. Bu munosabatni boshqa ko‘rinishda yozamiz
P{T( )–δ<θ< T( )+δ}=β (9)
(9) tenglik noma’lum θ parametrning qiymati β ehtimollik bilan
℮β =( T( )–δ ; T( )+δ ) (10)
oraliqda ekanligini anglatadi.
Shuni aytish joizki, (10) dagi ℮β – oraliq tasodifiy miqdorlardan iborat chegaralarga ega. Shuning uchun, β – ehtimollikni noma’lum θ parametrning aniq qiymati ℮β – oraliqda yotish ehtimoli deb emas, balki ℮β – oraliq θ nuqtani o‘z ichiga olish ehtimoli deb talqin qilish to‘g‘ri bo‘ladi (37 – rasm).
℮β
• • •
T( )–δ θ T( )+δ
4 – rasm.
Demak, aniqlangan ℮β oralig‘i ishonchlilik oralig‘i, β – ehtimol esa ishonchlilik ehtimoli deyiladi.
Do'stlaringiz bilan baham: |