8.14.1-misol. z = x3 + y3 -3xy funktsiyaning ekstremumini tekshiring.
Yech i sh. Berilgan funktsiya uchun z’x va z’y har doim mavjud va bu xususiy hosilalarni topamiz
Endi quyidagi sistemani tuzamiz:
bundan x, = 0, x2 = 1, y1 = 0, y2 = 1. Shunday qilib, M1(0;0) va M2(1;1) ikkita
statsionar nuqtaga ega bo‘ldik. Endi quyidagilarni topamiz:
U holda
M1(0;0) nuqtada bo‘lgani uchun bu nuqtada ekstremum yo‘q.
M2(1;1) nuqtada va bo‘lgani uchun bu nuqtada berilgan
funktsiya lokal minimumga erishadi: zmin=-1
Xususiy hosilalarni topish:
> restart;
> f5:=(x,y)->x^3+y^3-3*x*y;
> f5x:=diff(f5(x,y),x);
> f5y:=diff(f5(x,y),y);
> f5xx:=diff(f5(x,y),x$2);
> f5yy:=diff(f5(x,y),y$2);
> f5xy:=diff(f5(x,y),x,y);
> solvefor({f5x,f5y});
Warning, solvefor is deprecated. Please use solve command.
Statsionar nuqtalarda ekstremumni tekshirish:
1)
> x:=0;y:=0;A5:=f5xx; B5:=evalf(f5xy);C5:=evalf(f5yy); d5:=A5*C5-B5^2;
Ekstremim yo‘q, chunki A5<0, d5<0;
> x:=0; y:=0; f5M1:=x^3+y^3-3*x*y;
1)
> x:=1;y:=1;A5:=f5xx; B5:=evalf(f5xy);C5:=evalf(f5yy); d5:=A5*C5-B5^2;
Funktsiya minimumga ega, chunki A5>0, d5>0;
Do'stlaringiz bilan baham: |