Kvadrat tenglamalar oddiy tushuntirishlar. Kvadrat tenglamalarni yechish usullari Bibliografik tavsif


Tugallanmagan kvadrat tenglamalar



Download 302,5 Kb.
bet8/8
Sana23.05.2022
Hajmi302,5 Kb.
#608489
1   2   3   4   5   6   7   8
Tugallanmagan kvadrat tenglamalar
”, ya’ni birinchi darajali tenglamalar. Ushbu darsda biz o'rganamiz kvadrat tenglama nima va uni qanday hal qilish kerak.
Kvadrat tenglama nima
Muhim!
Tenglamaning darajasi noma'lumning eng yuqori darajasi bilan belgilanadi.
Agar noma'lumning maksimal darajasi "2" bo'lsa, sizda kvadrat tenglama mavjud.
Kvadrat tenglamalarga misollar

  • 5x2 - 14x + 17 = 0

  • −x 2 + x +

    1

    3

  • = 0

  • x2 + 0,25x = 0

  • x 2 − 8 = 0

Muhim! Kvadrat tenglamaning umumiy shakli quyidagicha ko'rinadi:
A x 2 + b x + c = 0
"a", "b" va "c" - berilgan raqamlar.

  • "a" - birinchi yoki katta koeffitsient;

  • "b" - ikkinchi koeffitsient;

  • "c" bepul a'zo.

"A", "b" va "c" ni topish uchun siz o'zingizning tenglamangizni "ax 2 + bx + c \u003d 0" kvadrat tenglamasining umumiy shakli bilan solishtirishingiz kerak.
Kvadrat tenglamalarda “a”, “b” va “c” koeffitsientlarini aniqlashni mashq qilaylik.
5x2 - 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +

Tenglama

Imkoniyatlar

  • a=5

  • b = -14

  • c = 17




  • a = -7

  • b = -13

  • c = 8











1

3

= 0

  • a = -1

  • b = 1

  • c =

1

3

x2 + 0,25x = 0

  • a = 1

  • b = 0,25

  • c = 0

x 2 − 8 = 0

  • a = 1

  • b = 0

  • c = -8

Kvadrat tenglamalarni yechish usullari
Kvadrat tenglamalarni yechish uchun chiziqli tenglamalardan farqli ravishda maxsus tenglamadan foydalaniladi. ildizlarni topish formulasi.
Eslab qoling!
Kvadrat tenglamani yechish uchun sizga kerak bo'ladi:

  • kvadrat tenglamani "ax 2 + bx + c \u003d 0" umumiy ko'rinishiga keltiring. Ya'ni, o'ng tomonda faqat "0" qolishi kerak;

  • ildizlar uchun formuladan foydalaning:

Kvadrat tenglamaning ildizlarini topish uchun formulani qanday qo'llashni aniqlash uchun misoldan foydalanamiz. Kvadrat tenglamani yechamiz.
X 2 - 3x - 4 = 0

"x 2 - 3x - 4 = 0" tenglamasi allaqachon "ax 2 + bx + c = 0" umumiy ko'rinishiga qisqartirilgan va qo'shimcha soddalashtirishlarni talab qilmaydi. Buni hal qilish uchun biz faqat murojaat qilishimiz kerak kvadrat tenglamaning ildizlarini topish formulasi.


Bu tenglama uchun “a”, “b” va “c” koeffitsientlarini aniqlaymiz.

x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Uning yordami bilan har qanday kvadrat tenglama yechiladi.


"x 1; 2 \u003d" formulasida ildiz ifodasi ko'pincha almashtiriladi
"b 2 - 4ac" "D" harfigacha va diskriminant deb ataladi. Diskriminant tushunchasi "Diskriminant nima" darsida batafsilroq muhokama qilinadi.
Kvadrat tenglamaning yana bir misolini ko'rib chiqing.
x 2 + 9 + x = 7x
Ushbu shaklda "a", "b" va "c" koeffitsientlarini aniqlash juda qiyin. Avval tenglamani "ax 2 + bx + c \u003d 0" umumiy ko'rinishiga keltiramiz.
X 2 + 9 + x = 7x
x 2 + 9 + x - 7x = 0
x2 + 9 - 6x = 0
x 2 − 6x + 9 = 0
Endi siz ildizlar uchun formuladan foydalanishingiz mumkin.
X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x=

6

2


x=3
Javob: x = 3
Download 302,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish