Элементы математической статистики


ЭМПИРИЧЕСКАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ



Download 479 Kb.
bet4/10
Sana25.03.2022
Hajmi479 Kb.
#509880
1   2   3   4   5   6   7   8   9   10
Bog'liq
2 Matematicheskaya statistika lektsii

1.4. ЭМПИРИЧЕСКАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ
Определение. Эмпирической функцией распределения выборки называется функция
(2)
где п – объем выборки, пх – число значений признака, меньших чем х, т. е. тех, для которых хi < х.
Функции F*(х) в теории вероятностей отвечает интегральная функция распределения F(х).
Функция F*(х) отличается от интегральной функции распределения F(х) тем, что при составлении F*(х) вместо вероятности события Р(X<х) вычисляется относительная частота события Р*(Х<х).
1.5. ВЫБОРОЧНЫЕ ХАРАКТЕРИСТИКИ СТАТИСТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ
Пусть имеется выборка объема n со значениями признака х1 х2, х3, ..., хk. Построим статистическое распределение.
Таблица 4



xi

x1

x2

x3



xk

ni

n1

n2

n3



nk

Для того чтобы охарактеризовать наиболее существенные свойства этого распределения, так же как и в теории вероятностей, используют средние показатели или, как их называют, выборочные числовые характеристики. Рассмотрим некоторые из них.
1. Выборочная средняя .При наличии повторяющихся значений признака
, (3)
где п — объем выборки, хi ni взяты из табл. 4. Выборочная средняя изменяется при переходе от одной выборки к другой, поэтому в силу случайного отбора является случайной величиной.
Если дано распределение непрерывной случайной величины, то вместо хi берут середину интервала (xi, …, xi+1), т.е. .
Для упрощения вычисления выборочных характеристик удобно перейти от данных значений признака x1|, х2, х3,...,хk к условным значениям и1, и2,. и3,..., uk—по формуле
, (4)
т. е. ввести вспомогательную величину , где С–новое начало отсчета, обычно это значение признака с наибольшей частотой, h – масштаб.
Можно показать, что при переходе к условным значениям признака по формуле зависимость, связывающая и , имеет вид
(5)
Действительно,


Пример. Дано статистическое распределение:
Таблица 5



хi

1

3

5

7

9

11

ni

2

8

15

14

7

4

Найти .
Решение. Перейдем к условным значениям признака, приняв за C значение с наибольшей частотой, т. е. С=5. Далее находим h = xi-xi-1 = 2.
Имеем

Составляем распределение условных значений признака.
Таблица 6



ui

–2

–1

0

1

2

3

ni

2

8

15

14

7

4

Находим


Особенно выгодно применять формулу (4), если значения признака велики.
2. Выборочная и исправленная дисперсия. Одна числовая характеристика не дает полного представления о статистическом распределении. В агрономической и зоотехнической практике, как и в других сферах производства, при анализе результатов существенным для выводов является характеристика рассеяния значений признака относительно выборочной средней. Отклонение отдельных значений от выборочной средней бывает значительным и с этим нельзя не считаться.
Составим таблицу отклонений , указывая соответствующие частоты.
Таблица 7















ni

n1

n2

n3



nk

Найдем среднее значение отклонений . Имеем

Следовательно, среднее значение отклонения равно нулю, и поэтому непригодно для характеристики рассеяния признака. Для того чтобы освободиться от знака отклонения и при этом сделать влияние больших отклонений «более ощутимыми», их возводят в квадрат и находят среднее значение. Полученную характеристику называют выборочной дисперсией и обозначают .


Итак,

или
(5)
Определение. Выборочной дисперсией называется среднее арифметическое значение квадратов отклонений признака от выборочной средней.
Пример. Урожайность двух сортов А и В пшеницы, возделываемых на трех участках с одинаковыми условиями роста и развития, характеризуется следующими таблицами:
сорт А сорт В

X, ц

18

19

20




Y, ц

17

19 '

22

Площадь, га

15

25

15

Площадь, га

20

20



Найти дисперсии значений признака обоих сортов.


Решение. Вычислим XB, YB, DX, DY. Находим




Как видим, дисперсия Dy как мера рассеяния или разброса урожайности сорта В относительно среднего значения YB в случае примерно одинаковых площадей больше, чем Dy, а это явление нежелательное. Из двух сортов лучшим является тот, урожайность которого более устойчива. По данным опыта сорт А предпочтительнее сорта В.
Для вычисления выборочной дисперсии используют следующую формулу:
(6)
т. е. дисперсия равна разности между средним значением квадрата и квадратом выборочной средней.
Действительно,

Для облегчения вычисления дисперсии используют следующие свойства:
1°. Дисперсия не изменится, если все значения признака увеличить (уменьшить) на постоянное число.
2°. При умножении значений признака на постоянное число h ≠ 0 дисперсия умножается на h2.
Выборочная дисперсия, как это показано в более подробных курсах (например, [4]), имеет систематическую ошибку, приводящую к уменьшению дисперсии. Чтобы это устранить, вводят поправку, умножая DB, на . В результате получают исправленную дисперсию
(7)
или
(8)

На практике часто вместо этой формулы используют другую, ей равносильную, а именно:


(9)

При малых выборках S ощутимо отличается от DB, например, при n = 2 имеем S2=2DB. С возрастанием n исправленная дисперсия S2DB. Уже при n = 30 дисперсии S2 и DB различаются на 3%.


3. Выборочное среднее квадратическое отклонение.
Определение. Арифметическое значение квадратного корня из выборочной дисперсии называется выборочным средним квадратическим отклонением:
(10)
Исправленное выборочное среднее квадратическое отклонение
(11)
4. Мода. Определение. Модой М0 называют значение признака, которое имеет наибольшую частоту (ni = max).
Например, для распределения, данного табл. 5, мода равна 5.
5. Медиана. Медианой те называют значение признака, которое делит статистическое распределение на две равные части:
me = xk+1, если n = 2k+1,
me = , если n=2k
6. Коэффициент вариации. Для сравнивания меры рассеяния значений признаков около выборочной средней в разных выборках служит коэффициент вариации.
Определение. Коэффициентом вариации V называется отношение выборочного среднего квадратического отклонения к выборочной средней, выраженное в процентах:
(12)
Пусть изучается случайная величина X. Из генеральной совокупности сделана выборка объема п со значениями признака х1 х2,..., хn. Предположим, что х1, х2,...,хn различны. Их можно рассматривать как случайные величины Х1, Х2, ..., Хn, имеющие то же распределение, что и случайная величина X, и, следовательно, одинаковые значения М(Х) и D(Х). Тогда

Воспользовавшись свойствами дисперсии находим

Пусть σ – средняя квадратическая ошибка выборочной средней. Тогда

Вывод. Средняя квадратическая ошибка выборочной средней σ( B) в раз меньше среднего квадратического отклонения случайной величины X, возможные значения которой попали в выборочную совокупность.

Download 479 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish