4-mavzu: kordinatalar sistemasini kiritish va ularni almashtirish. Tekislikda analitik geometriya. Kesmani berilgan nisbatda bo’lish. Ikki nuqta orasidagi masofani topish tekislikda Dekart koordinatalar sistemasi


-natija. Pri( )=pr I + pr i Isbot



Download 402,37 Kb.
bet3/4
Sana17.05.2023
Hajmi402,37 Kb.
#940125
1   2   3   4
Bog'liq
4-mavzu kordinatalar sistemasini kiritish va ularni almashtiris

1-natija. Pri( )=pr I + pr i
Isbot. Bizga , o‘q berilgan bo'lsin: shunday OXYZ koordinatalar sistemasi kiritamizki, OX koordinata o‘qi bilan ustma-ust tushsin. Agar

bo‘lsa, teoremaga ko‘ra pr I =xa va pr I =xb , pr I ( )=xa+b
tengliklami hosil qilamiz. Lekin vektorlarni qo'shganda ularning koordinatalari
mos ravishda qo‘shilgani uchun pr I ( )=xa+xb munosabatni olamiz.

Tekislikda kutb koordinatalar sistemasini kiritish uchun birorta О nuqtani va bu nuqtadan o‘tuvchi o‘qni tanlab olamiz. Tanlangan nuqtani qutb boshi, o‘qni esa qutb o‘qi deb ataymiz va uni bilan belgilaymiz. Tekislikda berilgan ixtiyoriy O nuqtadan farqli M nuqta uchun bilan masofani, ( bilan esa o‘q bilan OM nur orasidagi burchakni belgilaymiz. Bu kattaliklar M nuqtaning qutb koordinatalari deyiladi va M( , ) ko'rinishda belgilanadi.


Tekislikning О nuqtadan farqli nuqtalari bilan qutb koordinatalari o‘rtasidagi moslik o‘zaro bir qiymatli bo‘lishi uchun va kattaliklar uchun quyidagi chegara qo'yiladi: 0< < + , 0 <2
Agar (.x ,y ) D ekart koordinatalar sistemasini 4-rasmdagidek kiritsak, quyidagi

x = , y =
bog'lanishlarni olamiz.Berilgan M nuqtaning Dekart koordinatalari ma’lum bo'lsa, uning qutb koordinatalarini topish uchun

formula bo‘yicha birinchi qutb koordinatani topamiz.Ikinchi qutb koordinatani topish uchun M nuqtaning qaysi chorakda joylashganligini bilishimiz kerak va

tengliklardan foydalanishimiz kerak.
Tekislikda Dekart koordinatalar sistemasini almashtirish

Orientasiya: Bir vektordan ikkinchisiga qisqa burilish yo‘nalishi soat strelkasi yo‘nalishiga qarama-qarshi bo'lsa, bu vektorlar o‘ng ikkilik, aks holda chap ikkilik tashkil qiladi deyiladi. Bazis sifatida biror ikkilik tanlansa, biz orientatsiya tanlab olingan deb hisoblaymiz. Bizga { va { ortonormal bazislar berilgan bo'lsin. Bu bazislar yordamida


kiritilgan Dekart koordinatalar sistemasilarini mos ravishda O xy va O 'x'y' bilan belgilaylik. Nuqtaning “eski” va “yangi” koordinatalari orasidagi bog'lanishni topamiz. “Yangi” koordinatalar sistemasi markazining “eski” koordinata sistemasidagi koordinatalarini (a, b) bilan belgilaylik.

Tekislikda M nuqta berilgan bo‘lib,uning Oxy va O 'x'y' sistemalardagi koordinatalari mos ravishda (x ,y ) va {x',y') juftliklardan iborat bo'lsin.
Biz quyidagi tengliklarga ega bo`lamiz:

= x + y , O 'M = x' ' + y ’ ' , = a + b
Har bir vektorni { } bazis orqali ifodalash mumkinligi uchun

(1)
munosabatlarni hosil qilamiz. Bu ifodalarni
= ' + , =
tengliklarga qo‘yib
=
tenglikni hosil qilamiz.
Bazis vektorlari { } chiziqli erkli oilani tashkil etganligi uchun yuqoridagi munosabatdan
x = a11x'+a12y'+a
y=a21x'+a22y'+b (2)
formulalami olamiz. Endi aij koeffitsientlarni topish uchun ikkita holni qaraymiz.
Birinchi hol: { } va { } bazislar bir xil orientatsiyaga ega:
Bu holda agar bilan va vektorlar orasidagi burchakni belgilasak, va ' vektorlar orasidagi burchak ham ga teng bo‘ladi. Yuqoridagi (1) tengliklarning har ikkalasini va vektorlarga skalyar ko‘paytirib,
, , ,
formulalarni olamiz. Agar { } va { } bazislar har xil orientatsiyaga ega bo‘lsa, va vektorlar orasidagi burchak ga teng bo'ladi. Bu holda (1) tengliklarning har birini vektorlarga skalyar ko'paytirib , , , formulalarni hosil qilamiz. Bu formulalarni (2) formulalarga qo‘yib, mos ravishda quyidagi ikkita formulalarni olamiz:


(3)

Bu holda o’tish determinanti uchun



tenglik o'rinli.
Ikkinchi holda bazislaming orientatsiyalari har xil va koordinatalarni almashtirish formulalari

ko‘rinishda bo'ladi.
Bu holda o‘tish determinanti uchun '

tenglik o‘rinli bo'ladi. Demak, koordinatalar sistemesini almashtirganimizda o‘tish matritsasining determinanti musbat bo‘lsa, oriyentatsiya o'zgarm aydi. Agar o‘tish matritsasining determinanti manfiy bo‘lsa, oriyentatsiya qarama- qarshi oriyentatsiyaga o‘zgaradi.

Download 402,37 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish