Funksiya differensiali. Agar y
aniqlangan bo`lib, uning yorttirmasini
f (x) x0 nuqtaning atrofida
( )y A x x x
ko`rinishda tasvirlash mumkin bo`lsa, u holda ( )y fu fnk xs iya differensiallanuvchi A xesa uning differensiali deb ataladi. Bu yerda
x0 nuqtada
( 0 )A xxga
bog`liq emas, lim (
0
) 0x.
Funksiya differensiali quyidagicha yoziladi: , ( )d. y df Adx A
misol. y x2 funksiya differensiallanuvchi. Haqiqattan ham
y x x2 x2 2 x x x2 2 x x o x. ►
|
|
|
|
3-TEOREMA
|
|
y f (x) funksiya x nuqtada differensiallanuvchi bo`lishi uchun u
0
bu nuqtada hosilaga ega bo`lishi zarur va yetarli va quyidagicha bog`langan
dy()f x x .
0
Agar funksiyaa(b, ) intervallning har bir nuqtasida differensiallanuvchi bo`lsa, u holda bu funksiyaa(b, ) intervalda differensiallanuvchi bo`ladi.
|
( )yfor Amu xlada x (x )xqo`s xhiluvchi cheksiz kichik miqdor bo`lgan uchun bu formulani quyidagicha yozish mumkin:
y f ( x0 ) A x f ( x0 x) f ( x0 ) f ( x0 ) x .
Bu formuladan taqribiy hisoblarda foydalanish mumkin.
misol. y funksiyaning 90nxuqtadagi qiymatini toping.
Yechish. Bu yferxda (x) , 0 x81, x9deb faraz qilamiz. U holda
( )fx4 81 3 , f ( x) , f (x )
3 1 ,
3,083. ►
1 1
0 0 4 3 3 12
Hosilaning geometrik ma`nosi. M x f ;x nuqtada y f x
0 0
funksiyaga o`tkazilgan urinma deb MN kesuvchining (2-rasm) N nuqtasi M nuqtaga funksiya grafigi bo`ylab ixtiyoriy ravishda yaqinlashishini qabul qilamiz. Bunda
0. dx
2-rasm
f x qiymatM x f ;x nuqtada f x funksiyaga o`tkazilgan urinmaning
0 0 0
( 0 )tgburchf akxkoeffitsientini bildiradi (2-rasm).
M x f ;x nuqtada f x funksiyaga o`tkazilgan urinma tenglamasi quyidagi
0 0
ko`rinishga ega bo`ladi:
y f x0 f x0 x x0 urinma tenglamasi .
misol. 0 (4;2)M nuqtada ( )f x
tenglamasini tuzing.
f xunksiyagao`tkazilgan urinma
Yechish. f x 2, f x 1 , f x 1 1 .
0 2 0 2 4
Demak urinmya tenglamaxsi: 2 1
4
4 (3-rasm). ►
misol. 0,O0 nuqtada y funksiyaga o`tkazilgan urinma tenglamasi
0f bo`lgani uchun u vertikal to`g`ri chiziq bo`ladi (4-rasm). ►
3-rasm 4-rasm
Hosila olish va differensiallash qoidalari. ( )f vxa ( )gfuxnksiyalar x
nuqtada differensiallanuvchi bo`lib, k constbo`lsin. U holda:
1. f x gx f x gx; df x gx df x dgx. 2. kf x kf x; dkf x k df x.
3. f xgx
.
f xgxf xgx; df xgx df xgx f xdgx
2
2
4. f x f xgx f xgx ; f x df xgx f xdgx
0g. x
gx
g x
d gx
g x
Funksiyaning hosilasi va differensialini hisoblashda zarur bo`ladigan elementar funksiyalarning hosilalari jadvalini keltiramiz:
C1) C 0,const .
2) x x1, Rx1, x nx0, nn N
xn1,R , 1
1) ax x ln a, 0, a 1, xRe1, ex x x ,R .1
2) log x 1 ,
a 0, a 1, x 0.
a x ln a
log x 1 ,
a 0, a 1, x 0.
a
lnx
lnx
x ln a
1 , x 0.
x
1 , x 0.
x
5) sin x cos x, x R1.
6) cos x sin x, x R1.
7) tg x 1 ,
cos2 x
x n, n Z.
2
8) ctg x 1 ,
sin 2 x
x n, n Z.
arccosx 1 ,
arctgx 1 , x
1 x2
x 1.
R1.
arcctgx 1 , x
1 x2
R1.
13) shx
14) chx
15) thx
ch x, x
sh x, x
1 , x ch2 x
R1.
R1.
R1.
16) cth x 1 ,
sh2 x
ex 4x3
x 0.
misol.
y funksiyaning hosilasini hisoblang.
ln x
Do'stlaringiz bilan baham: |