§ 2. KATTA IKOSAHEDRAL GEOMETRIYASI
2.1. Pentagram va uning ochilishi. Besh qirrali yulduz
hamma uchun yaxshi ma'lum (15-rasm). U muqaddas edi
qadimgi davrlarda tanish bo'lgan, chaqirgan Pifagorlar orasida
uning penta grammi .
Shakl 15. Pentagramma
Muntazam qavariq beshburchakdan beshburchakgacha
yoki uning diagonallarini chizish orqali olish mumkin (16a-rasm) yoki
uning tomonlarini davom ettirish (16b-rasm). Ikkinchi holda, to'g'ri
pentagram olingan qavariq beshburchak
ma, deb ataladi Pentagram asosiy va uning markazi O hisoblanadi markazi
trombentagram .
Shakl 16a.
Shakl 16b.
Pentagram,
Pentagram,
beshburchakka yozilgan
beshburchak atrofida sunnat qilingan
o'n to'qqiz
Agar rasmda muntazam konveks beshburchak bo'lsa
16a bir tomonga, keyin uning diagonali uzunligiga teng
"oltin qism" F qiymatiga teng , bu erda F = 0,5 (
,
va ushbu diagonallar kesishgan segmentlar uzunliklarining qiymatlari
tavba qilish, bir-birlarini sindirish 17-rasmda ko'rsatilgan
ph = 1 / F , ya'ni φ = 0,5 (
). Φ + φ 2 = 1 ekanligini eslang .
Shakl 17. Pentagrammaning oltin qismi
Pentagram to'g'ri deb belgilanishi mumkin
burchaklari 0,2π bo'lgan besh zanjirli yopiq polilin (18-rasm), ya'ni.
bir o'lchovli raqam sifatida.
18-rasm.
Besh zanjirli yopiq polilin (pentagram)
yigirma
Ammo Kepler pentagramlarni ularning ko'p qirrali yuzlari sifatida ko'rdi
taxalluslar - katta va kichik stellat dodecahedrons. Shuning uchun,
katta yulduzli dodekaedrni davolash
ko'p qirrali sirt, biz pentagramni "uchburchak" qilamiz
P markazidan tortib beshta teng uchburchakka
pentagram P uchlarida tra O segmentlari (19-rasm). Penta
gramm P qirrasi yopishtirilgan, ko'p qirrali yuzaga aylanadi
burchaklari 0,1π bo'lgan beshta yonbosh uchburchakdan yasalgan,
0,1π va 0,8π (20-rasm). Biz buni ko'p qirrali deb belgilaymiz
TP belgisi bo'lgan sirt . Va bunday ko'p qirrali yuzaning chekkasi
nosti TP - muntazam yopiq beshta zanjirli polilin .
19-rasm. "Uchburchak"
Shakl 20. Uchburchakning burchaklari
pentagramlar
Markazi Ey Pentagram R , bu ko'p qirrali eng yuksagi bo'ladi
egri chiziqli sirt 2π - (0,8π) × 5 = –2π.
"Uchburchak" qalamning Eyler xarakteristikasi χ ( TP ) -
P yorlig'i 1 ga teng, chunki 6 - 10 + 5 = 1.
penta- deb hisoblasak, natija ham olinadi.
gramm 5 ta tepa, 5 ta tomon va ulardan biri cheklangan
mintaqa, chunki 5 - 5 + 1 = 1. Shuning uchun hisoblash
ko'p qirrali yuzalarga, yuzlarga xos Eyler
ulardan pentagramlar (va bu kichik va katta)
stelated dodecahedrons), bularni "uchburchak" qilishning hojati yo'q
pentagram va bunday ko'p qirrali yuzlar sonini ko'rib chiqing
ushbu beshburchaklarning sonini yuzalar.
Do'stlaringiz bilan baham: |