2-hol. Aytaylik, boʻlsin. Bu holda (4.2.1) tenglamalar sistemasi yagona yechimga ega boʻladi.
Teorema isbotlandi.
4.2.2-Teorema. tabiiy usulda graduirlangan filiform Leibniz algebraning differensiallash boʻlmaydigan 2-lokal differensiallashi mavjud.
XULOSA
Ushbu bitiruv malakaviy ishida tabiiy usulda graduirlangan filiform Leibniz algebralarining lokal va 2-lokal differentsiallashlari o’rganilgan.
Bitiruv malakaviy ishning II bo’bida nul-filiform va filiform Leibniz algebrasining differentsiallashining matritsaviy ko’rinishi topilgan.
Bitiruv malakaviy ishning III bobida nul-filiform Leibniz algebrasining lokal differentsiallashining matritsaviy ko’rinishi topilgan. Huddi shunga o’xshash filiform Leibniz algebralarining lokal differentsiallashlarining matritsaviy ko’rinishlari to’pilgan.
Bitiruv malakaviy ishning IV bobida nul-filiform Leibniz algebrasining 2-lokal differentsiallashining oddiy ma’noda differentsiallash bo’lishlik sharti ko’rsatilgan. Bundan tashqari, filiform Leibniz algebralarining oddiy ma’noda differentsiallash bo’lmaydigan 2-lokal differentsiallashining mavjud ekanligi isbotlangan.
FOYDALANILGAN ADABIYOTLAR
Ayupov Sh.A, Kudaybergenov K.K, Rakhimov I.S., 2-Local derivations on finite-dimensional Lie algebras. // Linear Algebra and its Applications, 474 (2015) p.1-11.
Ayupov Sh.A, Kudaybergenov K.K., Local derivations on finite-dimensional Lie algebras. // Linear Algebra and its Applications, 493(2016) p.381-398.
Ayupov Sh.A., Kudaybergenov K.K., 2-Local automorhisims on finite-dimensional Lie algebras. // Linear Algebra and its Applications, 507 (2016) p. 121-131.
Ayupov Sh.A., Kudaybergenov K.K., Omirov A.B., Local and 2-local derivations and automorphisms on simple leibniz algebras. // arXiv: submit/1849064 [math.RA] 2017.
Adashev J.Q., Ladra M. and Omirov B.A., Solvable Leibniz algebras with naturally graded non-Lie p-filiform nilradicals. // Communications in algebra 2017.
Chen Z., Wang D., 2-Local automorhisims on finite-dimensional simple Lie algebras. // Linear Algebra and its Applications, 486(2015) p. 335-344.
Kadison R.V., Local derivations. // J. Algebra, 130 (1990) p. 494-509.
Larson D.R., Sourour A.R., Local derivations and local automorphisms of . // Proc. Sympos. Pure Math. 51 (1990) p. 87-194.
Šemrl P., Local automorphisms and derivations on . // Proc. Amer. Math. Soc., 125(1997) p. 2677-2680.
Kim S.O., Kim J.S., Local automorphisms and derivations on . // Proc. Amer. Math. Soc., 132 (2004) p.1389-1392.
Casas J.M., Ladra M., Omirov B.A., Karimjanov I.A. Classification of solvable Leibniz algebras with null-filiform nilradical. // Linear and Multilinear algebra, vol. 61(6), 2013, p. 758 – 774.
Casas J.M., Ladra M., Omirov B.A., Karimjanov I.A. Classification of solvable Leibniz algebras with naturaly graded filiform nilradical. // Linear algebra and its Applications, vol. 438(7), 2013, p. 2973-3000.
Camacho L.M., Gomez J.R., Gonzalez A.J., Omirov B.A., Naturally graded
2-liform Leibniz algebras. // Comm. Algebra 38 (10), 2010, p. 3671-3685.
Loday J.-L. Une version non commutative des algèbres de Lie. // les algèbres de Leibniz. Enseign. Math. – 1993. - Vol. 39. – P. 269-293.
Loday J.-L., Pirashvili T. Universal enveloping algebras of Leibniz algebras and cohomology. // Math. Ann. – 1993. - Vol. 296. – P. 139-158.
Абдурасулов К.К., Адашев Ж.К., Саттаров А.М., Разрешимыe алгебр Лейбница с 2-филиформными нильрадикалами. // Узб. Мат. Журнал –
4. (2016) c.16-23.
Аюпов Ш.А., Омиров Б.А. О некоторых классах нильпотентных алгебр Лейбница. // Сиб. Мат. Журнал, –2001. Т. 42. – С. 18-29.
Аюпов Ш.А., Кудайбергенов К.К., Юсупов Б.Б., Локальные и -локальные дифференцирования некоторых филиформных алгебр Лейбница. // Узб. Мат. Журнал –№ 1 (2017) 44-54.
Do'stlaringiz bilan baham: |