3.1. Agar
A matritsa nosingular va simmetrik bo‘lsa,
A1 matritsa ham nosingular va simmetrik bo‘lishini ko‘rsating,
3.2. Agar
A kvadrat matritsa va (
I
A) nosingular matritsa bo‘lsa,
A(
I
A)
1 (
I
A)
1A tenglik bajarilishini ko‘rsating.
a c
3.3. A
b d
matritsaning teskari matritsaga ega bo‘lishi shartini toping.
2
3.4. A3
|
5
7
|
7 5 va C bo‘lsin. CA1 ekanini ko‘rsating.
|
3 2
|
|
4
3.5. B18
3
ko‘rsating.
|
0
1
0
|
5 4 0
24 matritsa A0 1
4 3 0
|
5
6 matritsaning teskari matritsasi bo‘lishini
4
|
1
|
11
|
3 5 3
21 11 matritsa A 4
|
2
1 matritsaning teskari matritsasi
|
3.6. B 17
|
|
36 10 6 2 3 1 5
bo‘lishini ko‘rsating.
3.7. Berilgan matritsalardan qaysi birlari uchun teskari matritsa mavjud bo‘ladi?
|
|
1 2 0 1
3 9 0 5
1) A2 6; 2) B7 2; 3) C 32 52 116 ; D02
0 1
3.8. A1 1 bo‘lsin. A2 A1 va A3 I bo‘lishini ko‘rsating.
3.9. Berilgan matritsalardan qaysi birlari o‘zaro teskari matritsalar bo‘ladi?
|
2
1
3
|
1
3.
10
|
1 1 0 1 3 5 2 5
1) 1 va 1 1; 2) 1 2 va 1 3;
0
|
|
1 2 0 7
3 0 15 0
0 5 va 50 3; 4) 10 23 13 va 23
3 6
A 2 5 matritsa berilgan. A1 matritsani toping.
5 2
A . matritsa berilgan. A1matritsani toping.
1 4
Berilgan shartlarni qanoatlantiruvchi A matritsani toping:
1
1 1 1 1
1) (3A)1 0 1; 2) (2A)T 2 3 ;
0 1 2
3) (AT 2I)1 21 10; 4) A1 14 03 83 .
|
2
1
1
|
6
3 .
2
|
|
|
1 0 0
3.13. ABC 5 1 0 bo‘lsin.
C1B1A1 ni toping.
0 0 1
3 2 3
3.14. A 4 1 6 matritsa berilgan.
C
Aadj
A ko‘paytmaning
barcha nodiagonal
7 5 1
elementlarini toping.
1 2 3
3.15. A0 2 4
matritsa berilgan.
C
Aadj
A ko‘paytmaning
barcha diagonal
1 3 0
elementlarini toping.
A matritsa berilgan.
A1 matritsani toping:
1 1 1 1 2 3
3.16. A1 2 1.
3.17. A2 6 4.
2 2 4 3 10 8
A matritsa berilgan.
A1 matritsani Jordan-Gauss usuli bilan toping:
1 0 1 2 1 1 0 1
2 1 0 1 1 0 1 0
3.18. A
1 1 2 1.
3.19. A
2 1 1 2.
1 1 2 1
0 1 2 0
3.20. A matritsa berilgan.
Matritsaning LU yoyilmasini toping:
2 1 6 4
8 7 12
|
5
|
|
3
3) A9
9
|
1
0
9
|
2 2
4; 4) A 4
14 6
|
3 13
5
|
2
9;
4
|
2
5) A 6
4
|
0
3
6
|
2
5 2 4
13 3; 6) A 6
16 17 6
8
|
3
8
5
9
6
|
4
7
14 .
12
10
|
1)
A
; 2)
A
;
A matritsa berilgan.
r(
A)ni minorlar ajratish usuli bilan toping:
1 1 2 3 1 2 3
3.21. A1 3 0 1.
3.22. A1 4 2.
3 4 1 1 2 2 7
A matritsa berilgan.
r(
A)ni elementar almashtirishlar usuli bilan toping:
1 1 3 4
1 3 2 1
3.23. A23 11 46 116.
3.24. A
112
143 0
33
19
2.
Adabiyotlar
Yo.U.Soatov. Oliy matematika 1-tom., T, “O’qituvchi” 1992
Yo.U.Soatov. Oliy matematika 2-tom., T, “O’qituvchi” 1992
Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162169.
Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp.
96-99.
Sh.R.Xurramov ”Matematika” Toshkent- 2016.