Referat mavzu. Matritsa ustida almashtirishlar toshkent 2016



Download 340,7 Kb.
bet4/4
Sana25.02.2022
Hajmi340,7 Kb.
#462777
TuriReferat
1   2   3   4
Bog'liq
matritsa ustida almashtirishlar

3. Mashqlar


3.1. Agar A matritsa nosingular va simmetrik bo‘lsa, A1 matritsa ham nosingular va simmetrik bo‘lishini ko‘rsating,
3.2. Agar A kvadrat matritsa va (I A) nosingular matritsa bo‘lsa,
A(I A)1 (I A)1A tenglik bajarilishini ko‘rsating.
a c
3.3. Ab d matritsaning teskari matritsaga ega bo‘lishi shartini toping.


 2
3.4. A3

5 

7

7 5 va C bo‘lsin. CA1 ekanini ko‘rsating.

3 2
 




 4

3.5. B18
 3

ko‘rsating.

0
1
0

5 4 0
 
24 matritsa A0 1
4 3 0


5

6 matritsaning teskari matritsasi bo‘lishini
4


1 

11

3 5 3
 
21 11 matritsa A 4

  1. 2



  1. 1 matritsaning teskari matritsasi

3.6. B  17

    

36 10 6 2 3 1 5 
 
bo‘lishini ko‘rsating.
3.7. Berilgan matritsalardan qaysi birlari uchun teskari matritsa mavjud bo‘ladi?




1 2 0  1
3 9 0 5   
1) A2 6; 2) B7 2; 3) C 32 52 116 ; D02


0 1
3.8. A1 1 bo‘lsin. A2 A1 va A3 I bo‘lishini ko‘rsating.
3.9. Berilgan matritsalardan qaysi birlari o‘zaro teskari matritsalar bo‘ladi?

2
1
3

1
 3.
10

1 1 0 1 3 5  2 5
1) 1  va 1 1; 2) 1 2 va 1 3;
0




1 2 0  7
3 0 15 0   

  1. 0 5 va 50 3; 4) 10 23 13 va 23


3 6

    1. A 2 5 matritsa berilgan. A1 matritsani toping. 

 5 2

    1. A . matritsa berilgan. A1matritsani toping.

1 4

    1. Berilgan shartlarni qanoatlantiruvchi A matritsani toping:

1
1 1 1 1
1) (3A)1 0 1; 2) (2A)T 2 3 ;

0 1 2
3) (AT 2I)1 21 10; 4) A1 14 03 83 .



2
1
1

6
 3 .
2







 1 0 0
 


3.13. ABC 5 1 0 bo‘lsin. C1B1A1 ni toping.
 0 0 1
3 2 3
 
3.14. A 4 1 6 matritsa berilgan. C AadjA ko‘paytmaning barcha nodiagonal
 7 5 1
elementlarini toping.
1 2 3
 
3.15. A0 2 4 matritsa berilgan. C AadjA ko‘paytmaning barcha diagonal
1 3 0
elementlarini toping.
A matritsa berilgan. A1 matritsani toping:
1 1 1 1 2 3
   
3.16. A1 2 1. 3.17. A2 6 4.
2 2 4 3 10 8

A matritsa berilgan. A1 matritsani Jordan-Gauss usuli bilan toping:
 1 0 1 2  1 1 0 1
   
2 1 0 1 1 0 1 0
3.18. A 1 1 2 1. 3.19. A 2 1 1 2.
   
1 1 2 1 0 1 2 0
3.20. A matritsa berilgan. Matritsaning LU yoyilmasini toping:
2 1  6 4

8 712

5




 3

3) A9
 9


1
0
9

2  2
 
4; 4) A 4
14  6

3 13
5

2

9;
4

 2

5) A  6
 4


0
3
6

 2

5 24
13 3; 6) A 6 
16 17   6
 
 8


3
8
5
9
6

4

7
14 .
12

10 

1) A; 2) A;
A matritsa berilgan. r(A)ni minorlar ajratish usuli bilan toping:
 1 1 2 3  1 2 3
   
3.21. A1 3 0 1. 3.22. A1 4 2.
 3 4 1 1  2 2 7 
A matritsa berilgan. r(A)ni elementar almashtirishlar usuli bilan toping:
1 1 3 4
 1 3 2 1  
3.23. A23 11 46 116. 3.24. A112 143 033 192.
Adabiyotlar

    1. Yo.U.Soatov. Oliy matematika 1-tom., T, “O’qituvchi” 1992

    2. Yo.U.Soatov. Oliy matematika 2-tom., T, “O’qituvchi” 1992

    3. Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162169.

    4. Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp.

96-99.

    1. Sh.R.Xurramov ”Matematika” Toshkent- 2016.

1 E.Kreyszig. Advancet engineering Matematics. Copyright. 2011, pp. 267-268

2 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169

3 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169

4 Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99

5 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169

6 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169

7 Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99

8 ~ 00 00 00 4 105~ 0000 00 02 15 U.

2

Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169

9 Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99


10 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169





Download 340,7 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish