10. Дроби в других государствах древности
В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями.
У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим.
Арабы первыми начали отделять чертой числитель от знаменателя.
Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Иордан Неморарий (XIII ст.) выполняет деление дробей с помощью деления числителя на числитель и знаменателя на знаменатель, уподобляя деление умножению. Для этого приходится члены первой дроби дополнять множителями:
В XV – XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.
Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: «Попасть в дроби», что означало – зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.
11. О простых числах. Евклид, Эратосфен, Чебышев
Разложение чисел на простые множители показывает, что всякое число является либо простым, либо произведением двух или нескольких простых чисел. Можно поэтому сказать, что простые числа являются составными элементами натуральных чисел, как бы кирпичами, из которых при помощи действия умножения составляются все целые числа. Вот почему простыми числами начали интересоваться еще в древности. Издавна бросалась в глаза нерегулярность распределения простых чисел среди всех натуральных чисел. Было замечено, что по мере продвижения от малого числа к большему в натуральном ряду простые числа встречаются все реже. Поэтому одним из первых вопросов был такой: существует ли последнее простое число, т. е. имеет ли ряд простых чисел конец? Около 300 лет до н. э. на этот вопрос дал отрицательный ответ знаменитый древнегреческий математик Евклид. Он доказал, что за каждым простым числом имеется еще большее простое число, т. е. существует бесчисленное множество простых чисел. Другой греческий математик того же времени — Эратосфен изобрел способ, посредством которого можно найти все простые числа от 1 до некоторого определенного числа. Этот способ называется «решетом Эратосфена» (рис. 1.). Пусть, например, требуется найти все простые числа между 1 и 50. Выписываем все числа от 1 до 50:
Рис. 1. Решето Эратосфена
Зачеркиваем единицу, которая не является ни простым, ни составным числом, затем подчеркиваем число 2 и зачеркиваем все числа, кратные двум, т. е. все числа таблицы, «через одно», начиная с 2. Далее подчеркиваем из не зачеркнутых чисел 3 и зачеркиваем все числа, кратные трем, т. е. «через два» и т. д. Оказывается, что между 1 и 50 имеются следующие 15 простых чисел: 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47. Этим способом в настоящее время составлены таблицы простых чисел между 1 и 12 000 000.
Для получения таблицы простых чисел Эратосфен, писавший на натянутом папирусе, не зачеркивал, а прокалывал составные числа. Отсюда название «решето Эратосфена»; оно отсеивает простые числа.
После Евклида и Эратосфена многие другие ученые разных стран и времен стремились глубже познать природу простых чисел. Особенно хотелось найти такую формулу, которая позволяла бы быстро узнать, сколько простых чисел имеется между 1 и любым числом натурального ряда. Лишь в XIX в., около 2200 лет после Евклида, великий русский математик Пафнутий Львович Чебышев открыл формулу, позволяющую приближенно подсчитать простые числа на любом участке натурального ряда. Начиная со второй половины XX в. для поисков больших простых чисел применяются электронные счетные машины. С их помощью доказана простота таких числовых гигантов, как:
(750 цифр); 23217—1; (1000 цифр) и др.
Do'stlaringiz bilan baham: |