Oʻzbekiston respublikasi oliy va oʻrta maxsus taʻlim vazirligi


Teorema. uchun quyidagicha bo’ladi: Foydalanilgan adabiyotlar



Download 1,2 Mb.
bet25/25
Sana27.04.2022
Hajmi1,2 Mb.
#584976
1   ...   17   18   19   20   21   22   23   24   25
Bog'liq
выав

Teorema. uchun quyidagicha bo’ladi:


Foydalanilgan adabiyotlar

  1. Devaney R.L. An introduction to chaotic dynamical systems,Westview Press,2003.




  1. Roziqov U.A. An introduction to mathematical billiards.World Sci.Publ.Singapore,2019,224 bet.




  1. Roziqov U.A,Sattorov I.A. Dynamical systems of the p-adic rational functions with two fixed points.Result in mathematics, 2020.V.75., No.3, Paper No.100, 37 pp.




  1. Roziqov U.A. Population dynamics:algebraic and probabilistic approach.World Sci.Publ.Singapore. 2020, 460 bet.




  1. Robinson.R.L . An introduction to dynamical system, continuous and discrete. Pearson Educ.Inc.2004.




  1. Elaydi.S.N. Discrete chaos.Chapman Hall/CRC.2000.




  1. Gʻanixodjayev R.N. “Квадратичный стохастические операторы” Докторc.Дисс.1992.




  1. Ganikhodzhaev R.N, Mukhamedov F.M, Roziqov U.A. Quadratic stochastic operators and processes: result and open problems. Inf.Dim.Anal.Quant.Prob.Rel.Fields. 2011.V.14,No.2,p.279-335.




  1. Galor O. Discrete dynamical systems. Springer -Berlin-2007,153 p.




  1. Katok A, Hasselblatt B. Introduction to the modern theory of dynamical systems// Encyclopedia of mathematics and its applications- Cambridge Univ.Press-London, 2005-V.54-802p.




  1. Sharkovskii A.N and etc.The dynamics of one-dimensional maps. Mathematics and its applications. V.407. Springer Netherlands-1997, 262p.




  1. Murray J.D. Mathematical Biology: An Introduction. Springer-Verlag, Berlin.




  1. Benedetto R. Hyperbolic maps in p-adic dynamics. Ergodic Theory and Dynamical Systems. 21 (2001), p. 1-11.



  1. Benedetto R. p-Adic dynamics and Sullivanʻs no wandering domains theorem. Compositio Mathematics. 122 (2000), p. 281-298.

  2. Call G. and Silverman J. Canonical height on varieties with morphisms. Compositio Mathematics. 89 (1993), p. 163-205.




  1. Dubischer D., Gundlach V.M., Khrennikov A. and Steinkamp O. Attractors of random dynamical system over p-adic numbers and a model of “noisy” cognitive process. Physica D. 130 (1999), p. 1-12.




  1. Fan A.H. and Liao L.M. On minimal decomposition of p-adic polynomial dynamical systems . Advances in Mathematics. 228 (2011), p. 2116–2144.




  1. Fan A., Fan S., Liao L., Wang Y. On minimal decomposition of p-adic homographic dynamical systems. Advances in Mathematics. 257 (2014),
    p. 92–135.




  1. Ganikhodjaev N.N., Mukhamedov F.M. and Rozikov U.A. Existence of phase transition for the Potts p-adic model on the set Zp . Theoretical and Mathematical Physics. 130 (2002), p. 425-431.




  1. Gandolfo D., Rozikov U.A., Ruiz J. On p-adic Gibbs Measures for Hard Core Model on a Cayley Tree . Markov Process. Related Fields 18 (4), (2012), p. 701–720.




  1. Gouvea F.Q. p-Adic Numbers: An Introduction. Springer-Verlag, Berlin Heidelberg, New York, second edition, 1997.




  1. Sattarov I.A. p-Adic (3,2)–rational dynamical systems with three fixed points. Uzbek Mathematical Journal. 2019. N. 3, p.85-100.




  1. Schikhof W.H. Ultrametric calculus. An introduction to p-adic analysis. Cambridge University Press, Cambridge, 1984.




  1. Svensson P.-A. Two-periodic dynamics in finite extensions of the p-adic number field. Proc. Steklov Inst. Math. 265(1) (2009), p. 235-241.




  1. Thiran E., Verstegen D. and Weters J. p-adic dynamics. Journal of Statistical Physics. 54(3/4) (1989), p. 893-913.




  1. Vladimirov V.S., Volovich I.V. and Zelenov E.I., p-adic Analysis and Mathematical Physics. World Scientific, Singapore, 1994.



  1. Yoccoz J.-C. and Herman M. Generalizations of some theorems of small divisors tp non-Archimedean fields. In: Geometric Dynamics (Rio de Janeiro, 1981), Lec. Notes in Math. 1007, Springer, Berlin, 1983, p. 408-447.

  2. A.R. Luna, U.A. Rozikov, I.A. Sattarov. P-adik dynamical systems of (3,1)-rational functions with unique fixed point. Arxiv:1807.11561v2 [math. DS] 2018.

  3. U.A. Rozikov. p-adik dynamical systems of the rational function . Arxiv: 2101.05750v1 [math. DS] 2021.




  1. U.A. Rozikov. What are p-adic numbers? What are they used for? Asia Pac. Math. Newsl. 3(4)(2013), 1-6.




1 https://en.wikipedia.org/wiki/Limit_set


Download 1,2 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   25




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish