229
3
1
3
n
n
n
n
n
n
n
n
.
1
0
3
1
lim
,
0
x
f
x
r
Sup
n
n
x
n
b)
1
0
x
bo`lsin. Bu oraliqda
0
x
r
n
bo`lgani uchun
0
1
lim
lim
1
1
1
0
1
0
n
n
n
x
r
Sup
n
n
n
r
x
r
Sup
x
r
n
n
x
n
n
n
x
n
x
f
n
funksional ketma-ketlik 1 ga tekis yaqinlashmaydi.
Demak, berilgan funksional ketma-ketlik
x
0
toplamda
notekis,
1
0
x
to`plamda esa tekis yaqinlashar ekan.
3.21-masala.
Veyershtrass
alomatidan
foydalanib,
1
2
1
ln
1
ln
n
n
n
x
funksional qatorning
2
0
x
oroliqda tekis
yaqinlashishini ko`rsating.
1
ln
1
ln
2
n
n
x
x
u
n
Berilgan
2
0
x
oraliqda
quyidagi
tengsizliklar o`rinli.
.
1
ln
2
1
ln
1
ln
1
ln
1
ln
1
ln
2
2
2
2
n
n
n
n
x
n
n
x
n
n
x
x
u
n
Agar
1
ln
2
2
n
n
a
n
deb belgilasak, Koshining
integral alomatiga
ko`ra
1
1
2
1
ln
1
n
n
n
n
n
a
sonli qator yaqinlashuvchi bo`ladi. Unda
Veyershtras alomatiga ko`ra berilgan funksional qator
2
0
x
oraliqda
tekis yaqinlashuvchi.
4.21-masala. Berilgan ushbu
1
2
2
2
2
1
...
4
1
2
1
n
nx
x
x
n
funksional qatorning
x
1
oraliqda tekis yoki notekis
yaqinlashuvchiligini aniqlang.
Bu qatorning tekis yaqinlashishini tekshirish uchun 2
0
-punktdagi
1-teoremadan, ya`ni (10)-tenglikdan foydalanamiz.
2
2
2
2
1
...
4
1
2
1
nx
x
x
n
x
u
n
230
,...
3
,
2
,
2
1
...
4
1
2
1
1
1
2
1
...
4
1
2
1
1
2
1
2
2
2
2
2
2
2
n
nx
x
x
x
n
x
x
x
va
n
k
k
n
nx
x
x
x
x
u
x
S
x
x
x
u
1
2
2
2
2
2
2
1
2
1
...
4
1
2
1
1
1
2
1
2
1
1
1
2
1
,
1
x
uchun
2
2
1
lim
x
x
S
x
S
n
n
va
x
S
x
S
x
r
n
n
n
x
r
Sup
nx
x
x
n
x
2
1
...
4
1
2
1
1
2
1
...
4
1
2
1
1
,
1
2
2
2
0
lim
,
1
x
r
Sup
n
x
n
Berilgan
qator
,
1
oraliqda
tekis
yaqinlashadi.
5.21-masala.
n
n
n
x
n
n
1
2
2
2
1
25
1
2
funksional
qatorning
yaqinlashish sohasini toping.
Yaqinlashish sohasini
Koshi alomatidan foydalanib, topamiz:
1
2
1
25
1
25
1
2
lim
lim
2
2
2
2
x
x
n
n
x
u
n
n
n
n
n
n
n
bo`lsa,
yaqinlashadi.
5
1
;
5
1
5
1
25
1
2
x
x
x
da
qator
yaqinlashadi. Chegaraviy
5
1
x
nuqtada esa
1
5
1
2
2
n
n
u
n
bo`lib,
0
1
1
lim
1
lim
2
2
n
n
n
u
n
n
n
qator yaqinlashishining zaruriy sharti bajarilmaydi
yaqinlashish
sohasi
5
1
;
5
1
interval ekan.
6.21-masala. Ushbu
1
3
3
2
3
27
n
n
n
n
x
arctg
x
funksional qatorning yaqinlashish sohasini toping.
Bu qatorning yaqinlashish sohasini Dalamber alomatidan
foydalanib, topamiz:
231
1
27
3
3
2
5
2
3
lim
27
3
2
3
27
5
2
3
27
lim
lim
3
3
3
3
3
1
1
x
x
n
n
x
x
n
x
arctg
x
n
x
arctg
x
x
u
x
u
n
n
n
n
n
n
n
n
n
bo`lsa yaqinlashadi.
3
1
x
yoki
3
1
;
3
1
x
da yaqinlashadi.
Chegaraviy nuqtalarda tekshiramiz.
1)
3
1
x
bo`lsin
3
2
1
0
3
2
1
3
1
*
n
n
arctg
u
n
va
1
3
2
1
n
n
uzoqlashuvchi
berilgan qator
3
1
x
nuqtada uzoqlashadi.
2)
3
1
x
bo`lsin
3
2
1
1
3
1
1
n
arctg
u
n
n
va
1
1
3
2
1
1
n
n
n
arctg
qator Lebnis alomatiga ko`ra
yaqinlashuvchi
berilgan qator
3
1
x
nuqtada yaqinlashuvchi.
Demak, berilgan funksional qatorning
yaqinlashish sohasi
3
1
;
3
1
yarim interval.
Do'stlaringiz bilan baham: