215
-B-
Mustaqil yechish uchun misol va masalalar.
1-masala.
x
f
n
funksional ketma-ketlikning M to`plamdagi
limit funksiyasini toping.
1.1
.
1
;
0
,
2
3
3
2
M
x
x
x
x
f
n
n
n
n
1.2
;
0
,
2
3
2
M
n
x
nx
x
f
n
1.3
.
,
1
2
R
M
n
x
x
f
n
1.4
;
0
,
1
M
arctgx
x
x
f
n
n
1.5
.
2
;
0
,
1
M
x
x
f
n
n
n
1.6
x
f
n
.
,
1
2
2
R
M
x
n
nx
1.7
x
f
n
.
;
0
,
sin
M
x
n
1.8
x
f
n
.
;
0
,
ln
ln
2
ln
2
2
2
2
M
n
x
x
n
x
n
1.9
x
f
n
.
2
;
0
,
sin
M
x
x
n
1.10
x
f
n
.
2
;
2
,
cos
M
x
n
1.11
x
f
n
.
;
0
,
2
3
M
e
x
n
nx
1.12
x
f
n
.
;
0
,
1
2
M
x
n
x
n
1.13
x
f
n
.
3
;
1
,
1
1
M
x
n
n
1.14
x
f
n
.
;
0
,
2
M
narctgnx
1.15
x
f
n
.
;
0
,
2
1
1
M
x
x
n
n
n
1.16
x
f
n
.
;
0
,
2
1
2
M
x
x
n
n
n
1.17
x
f
n
.
,
0
,
1
ln
sin
M
n
x
n
216
1.18
x
f
n
.
;
0
,
2
2
M
nx
arctg
n
x
n
1.19
x
f
n
.
;
0
,
cos
1
ln
M
x
n
nx
1.20
x
f
n
.
;
0
,
4
3
M
e
x
n
nx
1.21
x
f
n
.
;
0
,
3
ln
2
4
2
M
e
n
e
n
x
x
2-Masala. Berilgan funksional ketma-ketlikni ko`rsatilgan
oraliqda tekis yaqinlashishga tekshiring.
2.1
x
f
n
.
1
0
;
ln
x
n
x
n
x
2.2
x
f
n
.
4
1
0
;
x
x
n
2.3
x
f
n
.
1
1
;
2
x
e
n
x
2.4
x
f
n
.
1
0
;
1
x
x
x
n
n
2.5
x
f
n
.
1
0
;
1
x
e
x
n
2.6
x
f
n
.
1
0
;
x
x
n
2.7
x
f
n
.
0
,
x
xarctgnx
2.8
x
f
n
.
1
0
;
2
x
x
x
n
n
2.9
x
f
n
.
0
;
x
arctgnx
2.10
x
f
n
.
0
;
1
x
n
x
2.11
x
f
n
.
;
sin
x
n
x
2.12
x
f
n
.
1
0
;
1
x
x
n
nx
2.13
.
;
sin
x
n
nx
x
f
n
2.14
.
0
,
1
0
;
1
x
x
x
x
f
n
n
n
2.15
x
f
n
.
0
;
1
x
x
n
x
n
2.16
.
0
,
1
1
;
1
x
x
x
x
f
n
n
n
2.17
.
;
1
2
2
x
n
x
x
f
n
2.19
x
f
n
.
1
;
1
2
2
2
x
x
n
nx
2.18
.
2
;
1
x
x
x
x
f
n
n
n
2.20
.
1
0
;
1
2
2
2
x
x
n
nx
x
f
n
2.21
.
1
0
)
,
0
)
,
x
b
x
a
nx
x
n
x
n
x
f
n
3-masala.
Veyershtrass
alomatidan
foydalanib
berilgan
funksional qatorlarni ko`rsatilgan oroliqlarda tekis yaqinlashishini
ko`rsating.
217
3.1
1
`
3
2
.
;
2
n
x
n
x
x
arctg
3.2
1
2
0
;
n
nx
x
e
x
3.3
1
`
2
2
.
3
;
ln
1
ln
n
x
n
n
x
3.4
1
`
.
;
sin
n
x
n
n
nx
3.5
1
`
2
.
;
cos
n
x
n
nx
3.6
1
`
3
4
4
.
;
sin
n
x
x
n
nx
3.7
1
`
.
2
;
!
n
n
x
n
x
3.8
1
`
2
.
2
2
1
;
!
n
n
n
x
x
x
n
n
3.9
1
`
2
5
.
;
1
n
x
x
n
nx
3.10
1
`
2
4
.
0
;
1
n
x
x
n
x
3.11
1
.
2
;
2
1
n
n
n
x
x
3.12
1
`
2
2
.
;
1
n
x
n
x
3.13
1
3
1
.
0
;
1
n
n
x
n
x
3.14
1
3
1
.
1
0
;
1
n
n
n
x
n
x
3.15
1
2
1
.
1
1
;
1
n
n
n
x
n
x
3.16
1
.
0
;
1
2
1
2
1
n
x
n
x
n
x
3.17
1
2
2
.
;
2
1
sin
n
x
n
x
x
arctg
n
3.18
1
2
3
2
.
;
2
1
ln
n
x
x
n
nx
3.19
1
.
3
1
;
3
1
3
1
n
n
n
x
n
x
3.20
1
.
2
,
1
ln
n
n
x
x
nx
n
3.21
.
2
0
;
1
ln
1
ln
1
2
x
n
n
x
n
Do'stlaringiz bilan baham: |