Matritsalar va diterminantlar nazariyasi elementlari



Download 0,62 Mb.
bet8/26
Sana31.12.2021
Hajmi0,62 Mb.
#264452
1   ...   4   5   6   7   8   9   10   11   ...   26
Bog'liq
1-mavzu. Chiziqli algebra

Yechish.

4-misol. Firma 5 turdagi mahsulotni ikkita korxonada ishlab chiqaradi. Firmaning ishlab chiqargan mahsulotlari taqsimoti quyidagi jadvalda berilgan:

Mahsulot turlari

1

2

3

4

5

1-korxonada ishlab chiqarilgan mahsulotlar miqdori

139

160

205

340

430

2-korxonada ishlab chiqarilgan mahsulotlar miqdori

122

130

145

162

152

Firma ishlab chiqarish uskunalarini yangilash natijasida ishlab chiqarishni 17% ga oshirdi. Firma ishlab chiqarish uskunalarini yangilagandan keyin, firmaning bir oyda ishlab chiqargan mahsulotlari taqsimoti qanday boʻladi?



Yechish. Firmaning ishlab chiqarish uskunalarini yangilamasdan oldingi ishlab chiqargan mahsulotlari taqsimotini quyidagi matritsa koʻrinishda yozish mumkin:

Firma ishlab chiqarish uskunalarini yangilagandan keyin, firmaning bir oyda ishlab chiqargan mahsulotlari taqsimotini topish uchun, bu ishlab chiqarish matritsasini 1,17 ga koʻpaytirish zarur boʻladi:





Matritsalarni qoʻshish, ayirish va matritsani songa koʻpaytirish amallariga matritsalar ustida chiziqli amallar deyiladi.

Matritsalarni qoʻshish va songa koʻpaytirish amallari quyidagi xossalarga boʻysinadi:

Bu yеrda bir xil o‘lchamli matritsalar, matritsa esa matritsalar bilan bir xil o‘lchamli nol matritsa, ixtiyoriy haqiqiy sonlar.

Matritsalarni koʻpaytirish amali faqatgina zanjirlangan matritsalar ustida bajariladi.


9-ta’rif. oʻlchamli matritsaning oʻlchamli matritsaga koʻpaytmasi deb elementlari qoida bilan aniqlanadigan oʻlchamli matritsaga aytiladi.

Bu formuladan koʻrish mumkinki, va matritsalarning koʻpaytmasi matritsadagi element matritsaning satrida joylashgan har bir elementni matritsaning ustunida joylashgan mos oʻrindagi elementga koʻpaytirish va hosil boʻlgan koʻpaytmalarni qoʻshish natijasida aniqlanadi.

Masalan, bizga umumiy holda va koʻrinishdagi matritsalar berilgan boʻlsin. Bu matritsalarni koʻpaytirish quyidagicha amalga oshiriladi:

.

Endi buni aniq misollarda koʻrib chiqamiz.

5-misol. Quyidagi matritsani matritsaga koʻpaytiring:



Yechish. 1. Izlanayotgan matritsaning elementi matritsaning birinchi satr elementlarini matritsaning birinchi ustun mos elementlari bilan koʻpaytmalarining yigʻindisiga teng, ya’ni

.

2. Izlanayotgan matritsaning birinchi satr va ikkinchi ustunining elementi matritsaning birinchi satr elementlarini matritsaning ikkinchi ustun elementlari bilan mos ravishda koʻpaytmalarining yigʻindisiga teng:



.

3. Birinchi satr va uchinchi ustun elementi



kabi aniqlanadi.

4. Izlanayotgan matritsaning ikkinchi satr elementlari matritsaning ikkinchi satr elementlarining matritsaning mos ravishda 1, 2, 3-ustun elementlari bilan koʻpaytmalarining yigʻindisi sifatida topiladi:

5. matritsaning uchinchi satr elementlari ham shunga oʻxshash topiladi:



Shunday qilib,



.


Download 0,62 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   26




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish