LEYBNIS (Leibniz) Gotfrid Vilgelm (1646.1.7, Leypsig – 1716.14.11, Gannover) — nemis faylasufi, fizik, matematik, tarixchi. Berlin FA ning asoschisi va prezidenti (1700). 1676-y. dan Gannover gersoglari xizmatida. Petr I iltimosiga koʻra, Rossiyada maorif va davlatni boshkarishni rivojlantirish loyihalarini ishlab chiqqan. Leybnis fikricha, real dunyo oʻzaro boʻlinmas ruhiy substansiya — monadalardan iborat. Monadalar barcha narsalarning, hayotning asosini tashkil qiladi. Tabiat quyi darajadagi, inson esa oliy darajadagi monadalardan tashkil topgan. Bilish nazariyasida ratsionalizm mavqeida turgan. Lokk sensualizmiga qarshi chiqqan. Umumiy, zaruriy bi-limning asosi faqat akl boʻlishi mumkin deb hisoblagan. Fizikada fazo va vaqt harakatnshg nisbiyligi toʻgʻrisidagi, mantikda analiz va sintez toʻgʻrisidagi taʼlimotni rivojlantirdi, yetarli asos qonuniii birinchi boʻlib izohlab berdi. U matematik mantiq asoschilaridan biridir. Leybnis differensial hisob va integral hisobni kashf qildi, katta sonlarni hisoblash mashinasini yaratdi. Tilshunoslikda tillarning paydo boʻlish tarixini, genealogik tasnifini yaratdi, nomlarning kelib chiqishi haqidagi taʼlimotni rivojlantirdi. Siyosat va huquq sohasida tabiiy huquq konsepsiyasi va ijtimoiy kelishuv haqidagi taʼlimotni himoya qilgan. U optik asboblar va gidravlik mashinalar loyihasini yaratgan. 1926-y. dan Berlinda Leybnis jamiyati mavjud.
Mavzu: Ehtimollar nazariyasi rivojlanish tarixi. Ehtimollar nazariyasi fanining atoqli namoyondalari. Chiziqli algebra va ko’p o’lchovli geometriya
Ehtimollar nazariyasining tarixi ko'plab o'ziga xos xususiyatlar bilan ajralib turadi. Birinchidan, taxminan bir vaqtning o'zida paydo bo'lgan (masalan, matematik tahlil yoki analitik geometriya) matematikaning boshqa sohalaridan farqli o'laroq, ehtimolliklar nazariyasida antik va o'rta asrlarga xos bo'lmagan predmetlar mavjud edi, bu mutlaqo Yangi vaqtni yaratish edi [1]. Uzoq vaqt davomida ehtimollik nazariyasi sof eksperimental fan sifatida qabul qilingan va "juda ham matematik emas" [2] [3], uning qat'iy asoslanishi faqat 1929 yilda ishlab chiqilgan, ya'ni hatto o'rnatilgan nazariya aksiomatikasidan ham kechroq (1922). Bugungi kunda ehtimollik nazariyasi amaliy fanlar sohasida o'zining qo'llanilish sohasi bo'yicha birinchi o'rinlardan birini egallaydi; "Ehtimoliy usullar bu yoki boshqa tarzda qo'llanilmaydigan tabiiy fanlar deyarli yo'q" [4].
Tarixchilar ehtimollik nazariyasining rivojlanishida bir necha davrlarni ajratib ko'rsatishgan [5] [6].
16-asrgacha, orqa fon. Qadimgi davrlarda va O'rta asrlarda tabiiy faylasuflar tasodifning paydo bo'lishi va uning tabiatdagi roli to'g'risida metafizik munozaralar bilan cheklanganlar [7]. Bu davrda matematiklar ehtimollik nazariyasi bilan bog'liq muammolarni ko'rib chiqdilar va ba'zan echishdi, ammo hali umumiy usullar va tematik tushunchalar paydo bo'lmagan. Bu davrning asosiy yutug'i keyinchalik ehtimollik nazariyasini yaratuvchilar uchun foydali bo'lgan kombinatorial usullarni ishlab chiqish deb hisoblash mumkin.
XVII asrning ikkinchi yarmida cheksiz ko'p sonli tasodifiy o'zgaruvchilar uchun ehtimollik nazariyasining asosiy tushunchalari va usullari shakllanishining boshlanishi. Dastlab, rag'bat birinchi navbatda qimor o'yinlarida yuzaga keladigan muammolar edi, ammo demografik statistika, sug'urta va taxminiy hisob-kitoblar bo'yicha amaliy vazifalarni o'z ichiga olgan ehtimollik nazariyasi doirasi deyarli darhol kengaya boshladi. Ushbu bosqichda Paskal va Fermat yangi fan g'oyalariga muhim hissa qo'shdilar. Gyuygens ikkita fundamental tushunchani kiritdi: voqea ehtimolini raqamli o'lchovi, shuningdek tasodifiy o'zgaruvchini matematik kutish tushunchasi.
18-asrda ehtimolliklar nazariyasining tizimli ekspozitsiyasi bilan monografiyalar paydo bo'ldi. Ulardan birinchisi Yoqub Bernullining "Taxminlar san'ati" (1713) kitobi edi. Unda Bernoulli tasodifiy hodisa ehtimolining klassik ta'rifini taklif qildi, chunki ushbu hodisa bilan bog'liq bo'lgan ehtimoliy natijalar sonining umumiy natijalar soniga nisbati. Shuningdek, u murakkab hodisalar uchun ehtimollikni hisoblash qoidalarini bayon qildi va "katta sonlar qonuni" kalitining birinchi versiyasini berdi, nima uchun bir qator testlardagi voqealar chastotasi tasodifiy ravishda o'zgarmasligini, ammo ma'lum ma'noda uning yakuniy nazariy qiymatiga (ya'ni ehtimollik) ega ekanligini tushuntirdi.
Bernoulli g'oyalari 19-asr boshlarida Laplas, Gauss, Poisson tomonidan ancha rivojlangan. Amaliy statistikada ehtimoliy usullardan foydalanish sezilarli darajada kengaydi. Matematik tahlil usullaridan foydalanishga imkon beradigan doimiy tasodifiy o'zgaruvchilar uchun ehtimollik tushunchasi ham aniqlangan. Fizikada ehtimollik nazariyasini qo'llashning birinchi urinishlari paydo bo'ladi. 19-asrning oxiriga kelib statistik fizika paydo bo'ldi, o'lchov xatolarining qat'iy nazariyasi, ehtimoliy usullar turli xil amaliy fanlarga kirib bordi.
20-asrda mikroto'lqinlar nazariyasi fizikada, biologiyada irsiyat nazariyasi yaratildi, ularning ikkalasi ham asosan ehtimoliy usullarga asoslangan. Karl Pirson matematik statistika algoritmlarini ishlab chiqdi, ular amaliy o'lchovlarni tahlil qilish, gipotezalarni tekshirish va qarorlarni qabul qilish uchun keng va hamma uchun ishlatiladi. A. N. Kolmogorov ehtimollik nazariyasining klassik aksiomatikasini bergan. Ehtimollar nazariyasini qo'llashning boshqa yangi sohalari qatorida, ma'lumot nazariyasi va tasodifiy jarayonlar nazariyasini ham eslatib o'tish kerak. Ehtimollik nima va uning barqarorligi sababi nima haqida falsafiy munozaralar davom etmoqda.
O'rta asrlar Evropa va yangi asrning boshlanishi
Do'stlaringiz bilan baham: |