Курсовая работа по математическому анализу ряды фурье и их применение


Ряд Фурье для четных и нечетных функций



Download 0,79 Mb.
bet9/13
Sana18.10.2022
Hajmi0,79 Mb.
#853820
TuriКурсовая
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
Курсовая Ряды Фурье и их применение

1.5. Ряд Фурье для четных и нечетных функций


Рассмотрим симметричный интеграл

где непрерывная или кусочно-непрерывная на . Сделаем замену в первом интеграле. Полагаем . Тогда




Следовательно, если четная функция, то (т.е. график четной функции симметричен относительно оси и

Если - нечетная функция, то (т.е. график нечетной функции симметричен относительно начала координат) и

Т.е. симметричный интеграл от четной функции равен удвоенному интегралу по половинному промежутку интегрирования, а симметричный интеграл от нечетной функции равен нулю.
Отметим следующие два свойства четных и нечетных функций:
1) произведение четной функции на нечетную есть функция нечетная;
2) произведение двух четных (нечетных) функций есть функция четная.
Пусть - четная функция, заданная на и разлагающаяся на этом отрезке в тригонометрический ряд Фурье. Используя полученные выше результаты, получим, что коэффициенты этого ряда будут иметь вид:

Если - нечетная функция, заданная на отрезке и разлагающаяся на этом отрезке в тригонометрический ряд Фурье, то коэффициенты этого ряда будут иметь вид:

Следовательно, тригонометрический ряд Фурье на отрезке будет иметь вид

  1. для четной функции:



    (16)

  2. для нечетной функции:





Ряд (16) не содержит синусов кратных углов, то есть в ряд Фурье четной функции входят только четные функции и свободный член. Ряд (17) не содержит косинусов кратных углов, то есть в ряд Фурье нечетной функции входят только нечетные функции [8].
Определение. Ряды
являются частями полного ряда Фурье и называются неполными тригонометрическими рядами Фурье.
Если функция разлагается в неполный тригонометрический ряд (16) (или (17)), то говорят, что она разлагается в тригонометрический ряд Фурье по косинусам (или по синусам).



Download 0,79 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish