История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet28/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
1   ...   24   25   26   27   28   29   30   31   ...   60
Bog'liq
Лекция1

Теорема 21. Пусть а. b и с - натуральные числа.
а) Если а > с, то (а + b) - с = (a - с) + b.
б) Если b > с. то (а + b) - с - а + (b - с).
в) Если а > c и b > с. то можно использовать любую из данных формул.
Доказательство. В случае а) разность чисел а и существует, так как а > с. Обозначим ее через х: а - с = х. откуда а = с + х. Если (а b) - с = у. то, по определению разностиа b = с у. Подставим в это равенство вместо авыражение с + х: (с + х) + b = с + у. Воспользу­емся свойством ассоциативности сложения: с + (х + b) = с у. Преоб­разуем это равенство на основе свойства монотонности сложения, получим:
х + b = у. .Заменив в данном равенстве х на выражение а - с, будем иметь (а - г) + b = у. Таким образом, мы доказали, что если а > с, то (а + b) - с = (a - c) + b
Аналогично проводится доказательство и в случае б).
Доказанную теорему можно сформулировать в виде правила, удобного для запоминания: дли того чтобы вычесть число из суммы, достаточно вычесть это число из одного слагаемого суммы и к полу­ченному результату прибавить другое слагаемое.
Теорема 22. Пусть а, b и с - натуральные числа. Если а > b + с, то а (b + с) = (а - b) - с или а - (b + с) = (а - c) - b.
Доказательство этой теории аналогично доказательству теоремы 21.
Теорему 22 можно сформулировать в виде правила, для того чтобы вычесть из числа сумму чисел, достаточно вычесть из этого числа по­следовательно каждое слагаемое одно за другим.
В начальном обучении математике определение вычитания как действия, обратного сложению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с выполнения действий над одно­значными числами. Учащиеся должны хорошо понимать, что вычита­ние связано со сложением, и использовать эту взаимосвязь при вычис­лениях. Вычитая, например, из числа 40 число 16, учащиеся рассуж­дают так: «Вычесть из 40 число 16 - что значит найти такое число, при сложении которого с числом 16 получается 40; таким числом будет 24, так как 24 + 16 = 40. Значит. 40 - 16 = 24».
Правила вычитания числа из суммы и суммы из числа в начальном курсе математики являются теоретической основой различных прие­мов вычислений. Например, значение выражения (40 + 16) - 10 можно найти, не только вычислив сумму в скобках, а затем вычесть из нее число 10, но и таким образом;
а) (40 + 16) - 10 = (40 - 10) + 16 = 30 + 16 = 46:
б) (40 + 16) - 10 = 40 +(16- 10) = 40 + 6 = 46.

Download 1,03 Mb.

Do'stlaringiz bilan baham:
1   ...   24   25   26   27   28   29   30   31   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish