История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet1/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
  1   2   3   4   5   6   7   8   9   ...   60
Bog'liq
Лекция1


Лекция № 1-2


Тема: История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения. Теоретико-множественное определение разности у целых неотрицательных чисел. Правила вычитания: Его существование и единственность. Правила вычитания числа из суммы и суммы из числа.
Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, "три человека", "три озера" и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово "три" в контекстах "три человека", "три лодки" передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием ("много") о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как "толпа", "стадо", "куча" и т.д.
Источником возникновения понятия отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.
У большинства народов первым таким эталоном являются пальцы (пальцевой счет, о котором говорилось ранее), что без сомнений подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея - обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.
С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней "римские цифры", ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков - цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов (в устной речи) и в форме обозначения специальными знаками (в письменной).
Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.
Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких - либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматическогометода в математике, с одной стороны, и критического пересмотра основ математического анализа - с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность.
Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих "эталонную" совокупность (на ранних ступенях - пальцы рук и зарубки на палочке и т.д. на современном этапе - слова и знаки, обозначающие число. Определение, данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.
Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.
Было время, когда люди не умели считать. Чтобы сравнить конечные множества, устанавливали взаимно однозначное соответствие между данными множествами или между одним из множеств и подмножеством другого множества, т.е. на этом этапе человек воспринимал численность предметов без их пересчета. Например, о численности группы из двух предметов он мог говорить: "Столько же, сколько рук у человека", о множестве из пяти предметов - "столько же, сколько пальцев на руке". При таком способе сравниваемые множества должны были быть одновременно обозримы.
В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - для сравнения множеств стали применять множества-посредники: мелкие камешки, раковины, пальцы. Эти множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых предметов: речь шла, например, о пяти камешках, пяти пальцах, а не о числе "пять" вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом "рука", а численность множества из 20 предметов - словами "весь человек".
Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, т.е. когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок, не перечислялись уже "одно яблоко", "два яблока" и т.д., а проговаривались слова "один", "два" и т.д. Это был важнейший этап в развитии понятия числа. Историки считают, что произошло это в каменном веке, в эпоху первобытнообщинного строя, примерно в 10-5 тысячелетии до н.э.
Со временем люди научились не только называть числа, но и обозначать их, а также выполнять над ними действия. Вообще натуральный ряд чисел возник не сразу, история его формирования длительная. Запас чисел, которые употребляли, ведя счет, увеличивался постепенно. Постепенно сложилось и представление о бесконечности множества натуральных чисел. Так, в работе "Псаммит" - исчисление песчинок - древнегреческий математик Архимед (III в. до н.э.) показал, что ряд чисел может быть продолжен бесконечно, и описал способ образования и словесного обозначения сколь угодно больших чисел.
Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать эти числа независимо от тех конкретных задач, в связи с которыми они возникли. С развитием понятия натурального числа как результата счета предметов в обиход включаются действия над числом. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счета равными частями (по два, по три…), деление - как деление совокупности на равные части. Лишь во многовековом опыте сложилось представление об отвлеченном характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т.е. начинается развитие науки о числе. Теоретическая наука, которая стала изучать числа и действия над ними, получила название "арифметика". Слово "арифметика" происходит от греческого arithmos, что значит "число". Следовательно, арифметика - это наука о числе.
Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии и Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Греции. В средние века большой вклад в развитие арифметики внесли математики Индии, стран арабского мира и Средней Азии, а начиная с XIII века - европейские ученые.
Термин "натуральное число" впервые употребил в V в. римский ученый А. Боэций, который известен как переводчик работ известных математиков прошлого на латинский язык и как автор книги "О введении в арифметику", которая до XVI века была образцом для всей европейской математики.
Во второй половине XIX века натуральные числа оказались фундаментом всей математической науки, от состояния которого зависела и прочность всего здания математики. В связи с этим появилась необходимость в строгом логическом обосновании понятия натурального числа, в систематизации того, что с ним связано. Так как математика XIX века перешла к аксиоматическому построению своих теорий, то была разработана аксиоматическая теория натурального числа. Большое влияние на исследование природы натурального числа оказала и созданная в XIX веке теория множеств. Конечно, в созданных теориях понятия натурального числа и действий над ними получили большую абстрактность, но этим всегда сопровождается процесс обобщения и систематизации отдельных фактов.
Дальнейшие расширения понятия числа обусловлены уже не непосредственными потребностями счета и измерения, но явились следствием развития математики.
Отрезком N натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а, т.е N = {х|х N и х а}. 
Например, N это множество натуральных чисел, не превосходящих 7, т.е. N ={1,2,3,4,5,6,7}.
Отметим два важнейших свойства отрезков натурального ряда:
1) Любой отрезок N содержит единицу. Это свойство вытекает из определения отрезка натурального ряда.
2) Если число х содержится в отрезке N и х а, то непосредственно следующее за нми число х+1 также содержится в N .
Множество А называется конечным, если оно равномощно некоторому отрезку N натурального ряда. Например, множество А вершин треугольника, множество В букв в слове «мир» конечные множества, т.к. они равномощны отрезку N = {1,2,3}, т.е. А~B~ N .
Если непустое конечное множество А равномощно отрезку N , то натуральное число а называют числом элементов множества А и пишут n(A) = a. Например, если А – множество вершин треугольника, то n(A) = 3.
Всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда, т.е.каждому конечному множеству А может быть поставлено в соответствие однозначно определенное число а, такое, что множество А взаимно однозначно отображается на отрезок N . 
Установление взаимно-однозначного соответствия между элементами непустого конечного множества А и отрезком натурального ряда называется счетом элементов множества А. Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом – двухэлементные и т.д. И это число можно рассматривать как общее свойство класса конечных равномощных множеств. Таким образом, с теоретико-множественной точки зрения, натуральное число – это общее свойство класса конечных равномощных множеств.
Число 0 тоже имеет теоретико-множественное истолкование – оно ставится в соответствие пустому множеству: n( ) = 0.
Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:
1) как число элементов в множестве А, получаемое при счете;
2) как общее свойство класса конечных равномощных множеств.
Установленная связь между конечными множествами и натуральными числами позволяет дать теоретико-множественное истолкование отношения «меньше».
Если а = n(А), b = n(B), то число а меньше числа b тогда и только тогда, когда множество А равномощно собственному подмножеству множества В, т.е. А~В , где В В, В В, В (рис.1) . Либо когда отрезок натурального ряда N является собственным подмножеством отрезка N , т.е. N N . 
Числа а и b равны, если они определяются равномощными множествами: а = k А~B , где n(A) = a, n (B ) = k. Например, 2 = 2, т.к. n(А) = 2, n(B) = 2, А = {a, b}, B = {z, x}, A~B.
Свойства отношения «меньше» для натуральных чисел также получают теоретико-множественное истолкование: транзитивность и антисимметричность этого отношения связаны с тем, что транзитивно и антисимметрично отношение «быть подмножеством».
Покажем, используя теоретико-множественную трактовку отношения «меньше» для натуральных чисел, что 2<5.
Возьмем множество А, содержащее 2 элемента и множество В, содержащее 5 элементов, т.е. n(А) = 2, n(B) = 5. Например, А = {a, b}, B = {c, d, e, f, r}. Из множества B можно выделить подмножество В , равномощное множеству А: например В ={c, d} и А~В . Согласно определению отношения «меньше», 2<5.
Справедливость данного неравенства вытекает и из того, что N 
Данное неравенство можно рассмотреть на рисунке 2. Пусть 2 – это число кружков, а 5 – число квадратов. Если наложить кружки на квадраты, то увидим, что часть квадратов осталось незакрытыми. 
Значит, количество кружков меньше количества квадратов, т.е. 2<5.
Теоретико-множественный смысл неравенства 0<а, истинного для любого натурального а, связан с тем, что пустое множество является подмножеством отрезка N . 
Сравнение чисел в начальном курсе математики осуществляется различными способами – оно основано на всех рассмотренных нами подходах к трактовке отношения «меньше».

Вопрос об арифметических действиях является центральным в начальном курсе математики. От правильного его решения зависит успех формирования понятий о самих действиях, их свойствах, а также умений и навыков вычислений.


При традиционном подходе к обучению младших школьников конкретный смысл каждого действия раскрывается в процессе выполнения операций над конечными множествами (объединение множеств без общих элементов, удаление части множества, объединение множеств одинаковой численности, разложение данного множества на ряд равночисленных множеств), что позволяет опереться на жизненный опыт детей и использовать наглядность при изучении всех вопросов, связанных с действиями.
В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, вычитание – с операцией дополнения. [3, С.28]
Сложение с точки зрения определения суммы в количественной теории числа, называется число элементов в объединении не пересекающихся множеств А и B таких, что a=n (A); b=n (B). [6, С.265 ]
В программе математики М.И.Моро в качестве основного средства формирования представлений о смысле действий сложения и вычитания выступают простые текстовые задачи. [3, С.28] В программе Н.Б. Истоминой в основе лежит выполнение учащимися предметных действий, и их интерпретация в виде графических и символических моделей.

Download 1,03 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish