История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet31/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
1   ...   27   28   29   30   31   32   33   34   ...   60
Bog'liq
Лекция1

Теорема 27.Если натуральное число а делится на натуральное число с, то для любого натурального числа bпроизведение аb делится на с. При этом частное, получаемое при делении произведения аb на число сравно произведению частного, получаемого при делении а на с, ичисла b: (а × b):с - (а:с) × b.
Д о к азательство . Так как а делится на с, то существует такое натуральное число х, что а:с = х, откуда а = сх.Умножив обе части равенства на b, получим аb = (сх)b. Поскольку умножение ассоциативно, то (сх) b = с(х b).Отсюда (а b):с = х b= (а:с) b. Теоремуможно сформулировать в виде правила деления произведения на число: для того чтобы разделить произведение на число, достаточно разделить на это число один из множителей и полученный результат умножить на второй множитель.
В начальном обучении математике определение деления как операции обратной умножению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с первых уроков ознакомления с делением. Учащиеся должны хорошо понимать, что деление связано с ум­ножением, и использовать эту взаимосвязь при вычислениях. Выполняя деление, например, 48 на 16, учащиеся рассуждают так: «Разделить 48 на 16 - это значит найти такое число, при умножении которого на 16 получится 48; таким числом будет 3, так как 16×3 = 48. Следовательно, 48 : 16 = 3.
Упражнения
1. Докажите, что:
а) если частное натуральных чисел а и b существует, то оно единственно;
б) если числа а и b делятся на с и а > b, то (а - b): с = а: с - b: с .
2. Можно ли утверждать, что все данные равенства верные:
а) 48:(2×4) = 48:2:4; б) 56:(2×7) = 56:7:2;
в) 850:170 =850:10:17.
Какое правило является обобщением данных случаев? Сформулируйте его и докажите.
3. Какие свойства деления являются теоретической основой для
выполнения следующих заданий, предлагаемых школьникам начальных классов:
можно ли, не выполняя деления, сказать, значения каких выражений будут одинаковыми:
а) (40+ 8):2; в) 48:3; д) (20+ 28):2;
б) (30 + 16):3; г)(21+27):3; е) 48:2;
. верны ли равенства:
а) 48:6:2 = 48:(6:2); б) 96:4:2 = 96:(4-2);
в) (40 - 28): 4 = 10-7?
4. Опишите возможные способы вычисления значения выражения
вида:
а) (а b):с; б) а: b: с; в) ( а × b): с .
Предложенные способы проиллюстрируйте на конкретных примерах.
5. Найдите значения выражения рациональным способом; свои
действия обоснуйте:
а) (7× 63):7; в) (15× 18):(5×6);
б) (3× 4× 5): 15; г) (12 × 21): 14.
6. Обоснуйте следующие приемы деления на двузначное число:
а) 954:18 = (900 + 54): 18 = 900:18 + 54:18 =50 + 3 = 53;
б) 882:18 = (900 - 18): 18 = 900:18 - 18:18 = 50 - 1 =49;
в) 480:32 = 480: (8 ×4) = 480:8:4 = 60:4 = 15:
г) (560 × 32): 16 = 560(32:16) = 560×2 = 1120.
7. Не выполняя деления уголком, найдите наиболее рациональным
способом частное; выбранный способ обоснуйте:
а) 495:15; в) 455:7; д) 275:55;
6) 425:85; г) 225:9; е) 455:65.

Download 1,03 Mb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish