"Геометрические построения циркулем и линейкой" 46



Download 0,79 Mb.
bet16/25
Sana23.03.2023
Hajmi0,79 Mb.
#920748
1   ...   12   13   14   15   16   17   18   19   ...   25
Bog'liq
Алтынай

Задание 1. Приведите примеры точек, так же удовлетворяющих поставленным условиям ГМТ (серединный перпендикуляр, биссектриса угла).



Фигуры


Условия

Название
Фигуры



Если точка принадлежит фигуре, то обладает данным свойством

Если точка обладает данным свойством, то принадлежит фигуре



+



+


ГМТ




+


_









_



+







Закрепление
1. Верно ли утверждение, что отрезок АВ, параллельный данной прямой а и удаленный от нее на 5 см, является геометрическим местом точек, удаленных от данной прямой на 5 см? [Нет, так как хотя отрезок АВ и состоит из точек с данным свойством, но не все точки плоскости с данным свойством ему принадлежат, или не выполняется условие: ели точка обладает данным свойством, то она принадлежит отрезку АВ.
Условие задачи можно варьировать: взять два отрезка, отрезок и прямую и, наконец, две прямые (рис.40).
Рис.34
2. Можно ли прямую АВ, где А и В - различные точки прямой, считать геометрическим местом точек, лежащих между точками А и В? [Нет, так как про прямую АВ нельзя сказать, что она состоит из точек, лежащих между точками А и В, т.е. не выполняется условие: ели точка принадлежит прямой АВ, то она лежит между точками А и В.
Затем в условиях данной задачи заменяется прямая лучом АВ, а луч отрезком АВ.
3. Можно ли отрезок АВ, параллельный двум параллельным прямым а и b и одинаково отстоящий от них, считать геометрическим местом точек, одинаково удаленных от двух параллельных прямых? [Нет, так как не выполняется условие: если точка одинаково удалена от двух данных параллельных прямых, то она принадлежит отрезку АВ.
4. Найдите геометрическое место точек, одинаково удаленных от двух параллельных прямых а и b.
Решение. Проведем общий перпендикуляр DM прямых а и b и найдем его середину N (рис.41). Через точку N проведем прямую m, параллельную прямой а (она будет параллельна и прямой b). Докажем, что прямая m есть искомое геометрическое место точек.
Рис.35
Доказательство.1) Докажем, что если точка К принадлежит прямой m, то она удалена от прямых а и b на расстояние, равное р, где р-длина отрезка DN или MN. Так как параллельные прямые равноотстоящие, то точка К удалена как от прямой а, так и от прямой b на расстояние, равное р.2) Докажем, что точка S, одинаково удаленная от прямых а и b, принадлежит прямой m. Так как расстояние между прямыми а и b равно 2р, то точка S середина отрезка СЕ, перпендикулярного к прямым а и b и равного 2р. Пусть S m, а СЕ пересекает m в точке R. Тогда RC=RE=p по доказанном у в первой части, т.е. отрезок СЕ имеет две середины R и S, что невозможно, значит, S m.

Download 0,79 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   ...   25




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish