Algеbraik opеratsiya tushunchasi va uning xossalari: kommutativlik, assotsiativlik, distributivlik va qisqaruvchanlik. Nеytral, yutuvchi va simmеtrik elеmеntlar


Definition of Binary Operation on a Set



Download 0,71 Mb.
bet2/10
Sana26.01.2022
Hajmi0,71 Mb.
#411068
1   2   3   4   5   6   7   8   9   10
Bog'liq
Algеbraik opеratsiya tushunchasi va uning xos (1)

Definition of Binary Operation on a Set. A binary operation

on a non-empty set S is a mapping ∗ : S × S → S.

No more, no less! We usually write s ∗ sr in place of the more formal

∗(s, sr).

We have a wealth of examples available; we’ll review just a few of them here.


        • The familiar operations + and · are binary operations on our fa- vorite number systems: Z, Q, R, C.

        • Note that if S is the set of irrational numbers then neither + nor

          • defines a binary operation on S. (Why not?)

        • Note that subtraction defines a binary operation on R.

        • Let Matn(R) denote the n×n matrices with real coefficients. Then both + (matrix addition) and · (matrix multiplication) define bi-nary operations on Matn(R).

        • Let S be any set and let F(S) = {functions : S → S}. Then function composition defines a binary operation on F(S). (This is a particularly important example.)

        • Let Vect3(R) denote the vectors in 3-space. Then the vector cross product × is a binary operation on Vect3(R). Note that the scalar product · does not define a binary operation on Vect3(R).

        • Let A be a set and let 2A be its power set. The operations ∩, ∪, and + (symmetric difference) are all important binary operations on 2A.

        • Let S be a set and let Sym(S) be the set of all permutations on

S. Then function composition defines a binary operation on Sym(S). We really should prove this. Thus let σ, τ : S → S

be permutations; thus they are one-to-one and onto. We need to show that σ ◦ τ : S → S is also one-to-one and onto.



σ τ is one-to-one: Assume that s, sr ∈ S and that σ ◦ τ (s) =

σ τ (sr). Since σ is one-to-one, we conclude that τ (s) = τ (sr).


Download 0,71 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish