10.1-misol
10.12-shaklda ko’rsatilgan po’lat balkaning tayanch reaksiyalari aniqlansin va ko’ndalang kesimi qo’shtavr tanlansin.
Yechish: Statikaning muvozanat tenglamalarini topamiz:
х 0 ;
В 0
(1)
z 0 ;
R q 2a RВ P
0; R RВ
3qa
(2)
0;
В RВ 3а P
2a q2a a М
0;
3RВ а В
5qa 2
(3)
Demak, masala bir marta statik aniqmas ekan.
Masalani balka egilgan o’qining differensial tenglamasini integrallash usulidan foydalanib yechamiz.
Bunda integrallash natijasida hosil bo’lgan ixtiyoriy o’zgarmas sonlarni tenglashtirish usulidan foydalanamiz.
Koordinata boshini qistirib mahkamlangan tayanchga joylashtirsak, ixtiyoriy o’zgarmas sonlar S va D nolga teng bo’ladi.
2
Elastik chiziqning differensial tenglamasini tuzamiz va ularni ikki marta integrallaymiz:
EJ z11 R х М х0;
EJz1 R х М х С ; (4)
3
М
J z R х
х2
1 C х D
(5)
1 В 1 В 1
11
1 В 2
В 1 1
y 1 В 6
(x2 a)2
В 2 1 1 1
Jz2
RВ х2 МВ 2 х0 P (x2 a) q 2 ;
1 х 2
( x a) 2
(x a)3
Jz2
RВ 2
х2 P
2 q 2 C 2
2
х3 х2
(x a)5
2 6
(x a)4
, (6)
Jz2 RВ 2 МВ 2 P 2 q 2 C2 x2 D2 ;
6 2 6 24
(7)
1
S va D larni topish uchun quyidagi shartlarni yozamiz.
х1 0
bo’lganda
z1 0
bo’ladi, bundan
С1 0 ;
х1 0
bo’lganda
z1 0
bo’ladi, bundan
D1 0 ;
х x a bo’lganda z1 z1 bo’ladi, bundan C C
0 ;
1 21 1 2 1 2
х x a bo’lganda z z1 bo’ladi, bundan D D
0 .
1 21 1 2 1 2
х1 3а
bo’lganda
z2 0
bo’ladi va (7) dan quyidagini topamiz.
R
(3 а) 3
В 6 М В
(3 а) 2
P
2
(2 a) 3
q
6
(2 a) 4 24
0 ;
bundan
9RВ
4 qa 2
(8)
hosil bo’ladi.
МВ ni topish uchun (3)ning ikkala tomonini (-3) ga ko’paytirib, hosil bo’lgan ifodaga (8) ni hadlab qo’shamiz:
В В
3R а М 5qa2 -3
В В
9R а 9М 4qa2
bundan
11 qa2
В 6
11 20 22
6
14667 knm
167,55
10.12-shakl.
В ning qiymatini (3) ga qo’yib RВ
11 2
ni topamiz:
2
11 qa 5qa
11 20 22 5 20 22
3R а qa2 5qa2 ; R 6 6 91,1 kn
В 6 B 3a 3 2
RВ ning qiymatini (2) ga qo’yib, R ni topamiz :
R RВ
3qa ;
R 3qa RВ
3 20 2 91,1 28,9 kn
Topilgan tayanch reaksiya va tayanch momentining qiymatlari to’g’ri topilganligini tekshirib ko’ramiz:
z R RВ 3qa 28,9 91,1 3 20 2 120 120 0.
Demak, tayanch reaksiyalarining qiymatlari to’g’ri topilibdi.
Kesuvchi kuch
(Q(x))
va eguvchi moment
(M (x))
qiymati
мах
167,55 knm ni olib, balka ko’ndalang kesimini tanlaymiz.
W
мах
167,55 104
1600
1047,19 sm 3
.
Sortament jadvalidan №45 nomerli qo’shtavrni tanlaymiz.
NAZORAT SAVOLLARI.
Statik aniqmas balkalar deb qanday balkalarga aytiladi?
Asosiy sistema deb nimaga aytiladi?
Statik aniqmas balkalarni yechish planini aytib bering.
Deformasiya (ko’chish) tenglamalari qanday tuziladi?
Deformasiya tenglamalarini tuzishda qanday usullar bor?
Deformasiyalarni solishtirish usuli bilan deformasiya tenglamalari qanday tuziladi va ayrim deformasiyalar bu usulda qanday topiladi?
Teng qarshilik ko’rsatuvchi balka kesimlarining balandligi o’zgarmas bo’lsa, eni qanday qonun bilan o’zgaradi?
Teng qarshilikli balka kesimining eni o’zgarmas bo’lsa, balandligi qanday qonun bilan o’zgaradi.
Teng qarshilikli balkalarning uchlari qarshilik momentlari bilan eguvchi momentlari orasida qanday munosabat bor?
Teng qarshilikli balkalarning uchlari qanday konstruksiyalanadi?
Teng qarshilikli balkalarning deformasiyalari qanday topiladi?
Pog’onali o’zgaruvchan balkalarning deformasiyalari grafoanalitik usulda qanday hisoblanadi. Keltirilgan eguvchi moment formulasi qanday yoziladi?
Statik aniqmas balkalarning deformasiya tenglamalari Kastilyano formulasi yordamida qanday tuziladi?
20-ma’ruza.
11-BOB.
mavzu: MURAKKAB QARShILIK (MURAKKAB DEFORMASIYa).
REJA:
Asosiy tushunchalar.
Siniq sterjenlar uchun zuriqish kuchlarining epyuralarini qurish.
Qiyshiq egilish.
Tayanch tushunchalari va iboralari:murakkab qarshilik, murakkab deformasiya, siniq sterjenlar, zo’riqish kuchlari, qiyshiq egilish, normal kuchlanish, deformasiya, netral chiziq holati.
Yuqoridagi boblarda mashina va inshoot qismlariga ta’sir qilayotgan kuchlardan ularda hosil bo’ladigan bir turdagi oddiy , ya’ni cho’zilish va siqilish, siljish, buralish egilish deformasiyalarini tekshirgan edik. Ko’pincha shunday hollar bo’ladiki, mashina va inshoot qismlarida tashqi kuch ta’siridan yuqorida keltirilgan oddiy deformasiyalarning bir nechtasi bir yo’la hosil bo’ladi. Masalan, harakatdagi avtotransport vositalarining vallari bir vaqtning o’zida buralish va egilishga qarshilik ko’rsatishi mumkin, chunki ularning istalgan ko’ndalang kesimlariga faqat burovchi va eguvchi momentlar ta’sir qiladi. Ko’prik yoki kran fermalari tarkibiga kiruvchi sterjenlar cho’zilishi yoki siqilishi bilan birga egilishi ham mumkin, albatta ularning barcha kesimlari bo’ylama kuch va eguvchi momentlar ta’sirida ekanligidandir.
Mashina va inshoot qismlarining barcha ko’ndalang kesim yuzalariga ta’sir qiluvchi kuchlardan ularda oddiy deformasiyalarning kombinasiyalari hosil bo’ladigan barcha hollarga murakkab qarshilik yoki murakkab deformasiya deyiladi.
11.1-shakl, a da ko’rsatilgan konsolning a nuqtasiga qo’yilgan kuchning ta’sirini tekshiramiz. Erkin uchidan z masofada konsolni A tekislik bilan kesib ixtiyoriy kesim olamiz va koordinata o’qlarining markazini kesim markazida turadigan qilib olib, x va у o’qlarini
kesimining bosh inersiya o’qlari bo’ylab, z o’qini esa konsolning
geometrik o’qi bo’ylab yo’naltiramiz O x у z kuchi koordina o’qlari
bilan , , yo’naltiruvchi burchaklar hosil qiladi.
Bu kuch ta’siridan kesimda ichki zo’riqish kuchlarining barcha
oltita komponentlari: N , Qу ,Qx , М х , М х , М у
b)
va М z
hosil bo’ladi 11.1-shakl,
Bularning har qaysisi, konsolning fikran tashlab yuborilgan qismiga qo’yilgan barcha kuch va juftlarning tegishli o’qlarga nisbatan olingan proyeksiyalari va momentlarining yig’indisiga teng bo’ladi:
Normal kuch N cos;
Kesuvchi kuchlar
Q соs ;
Q cos ;
у
x
Eguvchi momentlar
М 4 сos z cos ; М
х 2 у
в сos z cos ; 2
Burovchi moment
М в сos
z 2
2
11.1- shakl.
Yuqoridagi ichki zo’riqish kuch komponentlari ta’siridan ko’ndalang kesimning nuqtalarida normal kuch va eguvchi momentlardan normal kuchlanish, kesuvchi kuchlar va burovchi momentdan esa, urinma kuchlanishlar hosil bo’ladi.
Murakkab qarshilik jumlasiga qiyshiq egilish, markaziy bo’lmagan siqilish, buralish bilan egilishning birgalikdagi ta’siri va boshqalar kiradi.
Bu masalalarni hal qilishda quyidagi ikkita tipdagi konstruksiyalarga e’tibor berish lozim.
Mashina va inshoot qismlarida hosil bo’ladigan deformasiyalarning juda kichikligidan, ularga ta’sir etuvchi kuchlar absalyut qattiq jismga qo’yilgandek ta’sir etish xarakterini va o’z yo’nalishini o’zgartirmaydi va bikr konstruksiyalar deyiladi.
11.2-shakl.
Mashina va inshoot qismlari egiluvchanligi sababli, kuch komponentlariga yo’nalishiga deformasiyaning ko’rsatgan ta’sirini hisobga olish lozim bo’ladi.
Bikr konstruksiyalardan amalda juda ko’p foydalaniladi. Masalan, mashina va inshoot qismlari bikr konstruksiyalar tipiga kiradi. Qurilish texnikasida ikkinchi tip konstruksiyalar birinchi tipdagiga nisbatan kam uchrasada ular muhim ahamiyatga egadir.
Masalan, samolyot va kemasozlik elementlarida va o’lchash asboblarining elementlarida deformasiyalar sezilarli darajada katta bo’ladi.
11.2-shaklda
N , М х
va М у
larning musbat chorakda yotuvchi
nuqtalarda cho’zuvchi kuchlanish yuzaga keltiriladi.
Masalan, cho’zilish va egilish ikkita tekislikda bir vaqtda ta’sir qiladigan bo’lsa, konsol ko’ndalang kesimining musbat choragidagi kuchlanish quyidagi formuladan topiladi:
N
F
J x
y M y x.
J y
Urinma kuchlanishlarni topish uchun har bir tekislikdagisi aniqlanib, ular geometrik qo’shiladi:
2 2 ,
bunda
Qу
у
S
oj
x ;
х
S
Q
оj
x
x у
bo’ladi
у
J xву J увx
11.3-shaklda ko’rsatilgandek, o’qi to’g’ri chiziq kesmalaridan iborat bo’lgan fazoviy sterjenlar mashinalarni loyixalashda ko’p uchraydi. Bunday sterjenlarni xavfli kesimini topish uchun ichki zo’riqish
kuchlarining ya’ni,
N ,Qx ,Qу , М x , М у , М z
larning epyuralari quriladi. Har bir
sterjen uchun koordinata o’qlarining belgilanishi 11.3-shaklda ko’rsatilgan. ОХ va OУ o’qlarini ko’ndalang kesim yuzasining bosh inersiya, оz o’qini brusning bo’ylama o’qi sifatida qabul qilamiz.
11.3-shakl.
Oldin qabul qilingan ishoralarni olish qoidalaridan foydalanib, har bir sterjen uchun eguvchi moment va kesuvchi kuch epyuralarini tekis brusdagidek quramiz. Har bir sterjenni shunday joylashtirish kerakki,
bunda Qу
va М x , Qx
va М у
epyuralarini qurishda mos ravishda koordinata
boshiga Ох va Оу o’qlarining musbat yo’nalishi tomonidan qaraladigan bo’lgan.
11.3-shaklda ko’rsatilgan brus uchun epyuralar qurishni misol
tariqasida tekshiramiz.
AВ sterjen uchun:
N 3 1,0
kn;
М ва 𝑙 0,8 0,4 0,32 knm; М
1 𝑙 01 0,2 knm;
x 2 ав у
М z 0;
Qу 0,8 kn;
Qx 1 0,5 kn.
VS sterjen uchun:
N 1 0,5kn; М вс 1𝑙 ов 0,2knm; М cк 1𝑙 ав у 𝑙 вс 0,5 0,4 1,0 0,5 0,7knm;
x x
z 2 aв
М у 2 𝑙 ав 0,4knm; М 1c 𝑙 0,32knm; Qу 3 1,0kn; Qx 2 0,8kn;
СD sterjen uchun:
N 2 0,8 kn;
cd 2𝑙 ав
0,8 0,4 0,32 knm;
D 2𝑙 aв 3𝑙 сd
x
x
М
М
М
0,8 0,4 1,0 0,3 0,62
knm
у
М
сd 2
𝑙 aв
0,4 knm;
вс 2𝑙 ав
0,32 knm; Qу
3
1,0 kn;
Qx 2
0,8 kn;
z
СD sterjen uchun:
x
N 2 0,8 kn; М cd
Р2𝑙 ав 0,8 0,4 0,32 knm;
x 2 ав 3 сd
М D Р 𝑙 𝑙
0,8 0,4 1,0 0,3 0,62 knm
у
2
М сd
𝑙
0,4 knm;
М dc
𝑙
0,25knm Q
1,0 kn; Q
0,5kn;
z
1
1
cв
1
aв
у
x
М z 1𝑙 ав 3 𝑙 вс 0,5 0,4 1,0 0,5 0,7 knm
Topilgan qiymatlardan foydalanib qurilgan N normal kuch, M x va M у
eguvchi momentlar, М z
burovchi moment, Qу
va Qx
kesuvchi kuchlar
b)
epyuralari mos ravishda 11.4-shakl,
а,b,в, г,д,е
larda ko’rsatilgan.
11.4-shakl.
Biz yuqorida ko’ndalang egilishda balka ko’ndalang kesimida
hosil bo’ladigan normal kuchlanishni
M z
J у
formuladan foydalanib
topib kelgan edik. Balkaga qo’yilgan kuchlar uning biror bosh inersiya tekisligida yotgan hollarda bu formuladan foydalanish mumkin. Mashina va inshoot qismlarida ko’pincha shunday hollar ham uchraydiki, balkaga
qo’yilgan kuchlar uning o’qiga tik bo’lgan holda, bosh inersiya o’qlaridan o’tmaydigan tekisliklarda yotadi. Bunday hollardagi egilishga qiyshiq egilish deyiladi. Boshqacha qilib aytganda, qiyshiq egilishda balkaning
ko’ndalang kesim yuzasida ikkita eguvchi M x
bo’ladi.
va M у
momentlar hosil
Masalan, tomlarni yopishda shlatiladigan tunika ostiga qoqiladigan (reyka) taxta panjaralarga shunday kuchlar ta’sir qiladiki, bu kuchlar yotgan tekisliklar taxta panjaralar ko’ndalang kesimlarining bosh inersiya o’qlari orqali o’tuvchi tekisliklar bilan burchak hosil qiladi. 11.5-shaklda ko’rsatilgandek, tunika va taxta panjaralarning o’z og’irligidan tushadigan
kuch taxta panjaralarning o’qi bilan burchak hosil qilgan holda yo’naladi.
Bir uchi bilan qistirib mahkamlangan burchaklikning kesimi bosh inersiya o’qlari kuchga nisbatan burchak ostida yo’nalganligi sababli unda ham qiyshiq egilish sodir bo’ladi (11.6-shakl).
11.5-shakl.
11.6-shakl.
Qiyshiq egilishga oid ayrim masalalarni yechishni quyidagi misolda ko’rib chiqamiz:
Do'stlaringiz bilan baham: |