Teorema. Agar
f t
funksiyaning tasviri
F p
bo‟lsa, u holda
e pt f ( t )
ning tasviri
qilinadi.
F ( p )
e t f ( t )
boladi. Bunda
R e ( p ) S 0
deb faraz
L e t f ( t ) e p t e t f ( t ) d t
e ( p ) t f (t ) d t
0 0
L e t f ( t )
F ( p )
Bu teorema tasvirlar sinfini ancha kengaytiradi va ularning orginali oson topiladi.
Misol.
e t ,
sh t , ch t , sin a t , e t co s a t
funksiyalarning tasvirini topaylik.
bo‟lgani uchun 1
p
e t
bo‟ladi, shunga o‟xshash 1
p
e t . Bulardan
ikkinchisidan birinchisini ayirib 2-ga bo‟lamiz: 1 (
2
1
p
1
)
p
1 ( e t
2
e t )
yoki
p 2 2
sh t
agar ularni qo‟shsak
p
p 2 2
ch t
kelib chiqadi.
a
p 2 a 2
s in at va
p
p 2 a 2
c o s at
bo‟lgani uchun siljish teoremasiga
asosan:
a
( p ) 2
e t s in a t va
kelib chiqadi.
p
( p ) 2
e t c o s a t
Misol: 1) Tasviri
F ( p )
7
p 2 1 0 p 4 1
bo‟lgan
f t
funksiya topilsin.
7 7 4
F ( p )
; f ( t )
7 e 5 t
s in 4 t
p 2 1 0 p 4 1 4[( p 5 ) 2
1 6 ] 4
2) F ( p )
p 3
p 3
p 1 2 3
;
p 2 2 p 1 0 ( p 1) 2
9 ( p 1) 2 9
3 ( p 1) 2 9
f ( t ) e t co s 3 t 2 e t s in 3 t
3
Tasvirlarni differensiallash va integrallash
Teorema 1. Agar
F ( p )
f ( t )
bo‟lsa u holda
bo‟ladi.
Isbot.
f ( t )
M e S 0 t
d n
( 1) n F ( p )
dp n
bo‟lganda quyidagi
t n f ( t )
(1.2.1)
e p t ( t n ) f ( t ) d t
0
integral mavjud ekanini isbot qilamiz. Shartga ko‟ra
f ( t )
M e S 0 t , p
a
ib ,
a S 0 ,
a 0 ,
S 0 0
Bunga asosan shunday
0
topiladiki, bu uchun
a S 0
tengsizlik bajariladi.
Shuning uchun quyidagi integral yaqinlashadi:
M
e ( a ) t f ( t ) d t M
e ( a ) t e S 0 t d t M
ed t
e p t t n f ( t )
0
d t
e ( p ) t e t t n f ( t ) d t
0
e p t t n f ( t )
0
d t N
0
e ( p ) t f ( t )
d t
N e ( a ) t
0
f (t )
d t .
Demak
e p t ( t ) n
0
f ( t ) d t
yaqinlashadi. Bu integralni quyidagi
F ( p )
0
e pt f ( t ) d t
integralning p -parametr bo‟yicha n - tartibli hosilasi deb qarash mumkin, yani
e p t ( t ) n
f ( t ) d t
d n
dp n
e p t f ( t ) d t
0 0
oxirgi 2 tenglikdan :
d n
( 1) n
dp n
F ( p ) e p t t n f ( t ) d t
0
yoki
d n
( 1) n
dp n
F ( p )
t n f ( t )
formula kelib chiqadi.
Bu formuladan
formulaga asosan:
f ( t ) t n
- darajali funksiyaning tasvirini topamiz: 1 1
p
d
( 1)
1
t
yoki 1 t
dp p p 2
shunga o‟xshash
d 1
( 1)
t 2
yoki 1 t
d
( 1)
1
3
t 3 yo k i 3 t
4
dp p p
n
p n 1
t n
Misollar. 1)
a
p 2 a 2
s in at
bo‟lgani uchun formulaga asosan
d
( 1)
a
2 2
2 pa
2 2
t s in a t
dp p a
p
( p a )
a 2 p 2
2)
c o s at
dan t c o s a t ;
p 2 2
( p 2 a 2 ) 2
3) 1
p
e t
dan
1
( p ) 2
te t
Teorema 2. Agar
F ( p )
f ( t )
bo‟lsa, u holda:
f ( t )
F ( p ) d p
0 t
integrallash bilan Ô ( p ) F ( p ) d p
0
ni olamiz yoki
F ( p ) d p
0
f ( t )
t
Do'stlaringiz bilan baham: |