Originalni differensiallash va integrallash
Teorema1. Agar bo‟ladi.
F ( p )
f ( t )
bo‟lsa, u holda
P F ( p ) *
f ( 0 )
f ( t )
Isbot. Tasvirni ta‟rifiga ko‟ra:
L f ( t ) e pt f ( t ) d t .
0
Bu integralni bo‟laklab integrallaymiz:
I f ( t )
e f ( t ) d t
0
e f ( t )
0
0
0
f ( 0 )
p F ( p );
(bunda lim e pt f ( t ) 0 ,
t
Shu yo‟l bilan:
e pt f ( t ) d t
0
F p ). Demak
p F ( p )
f ( 0 )
f ( t )
p p F ( p )
f ( 0 )
f ( 0 )
f ( t )
yo k i
p 2 F ( p )
p f ( 0 )
f ( 0 )
f ( t )
p n F ( p ) p n 1 f ( 0 )
p n 1 f ( 0 )
p f ( n 2 ) ( 0 )
f ( n 1 ) ( 0 )
f ( n ) ( t )
bo‟lsa, u holda:
f ( 0 )
f ( 0 )
f ( n 1) ( 0 ) 0
F ( p )
p F ( p )
f ( t )
f ( t )
p n F ( p ) f ( n ) ( t )
t F ( p )
Teorema 2. Agar
f ( t )
F ( p )
bo‟lsa, u holda
f ( u ) d u
0 p
bo‟ladi.
Isbot.
t
( t )
0
f ( u ) d u
Ô ( p )
deb belgilasak, 1-teoremaga asosan:
( t )
p Ô ( p ) ( 0 )
p Ô ( p )
bo‟ladi ( ( 0 )
0 ) .
t
( t )
0
Misol.
f ( u ) d u
f ( t )
bo‟lgani uchun
t
f ( u ) d u
0
F ( p )
p
kelib chiqadi.
c o s t
p ;
p 2 1
c o s td t s in t
1 .
p 2 1
Odatda funksiyaning tasviri uchun jadval tuziladi va amalda foydalaniladi.
Bazi bir originallar va ularni tasvirlari.
№
|
Original f t
|
tasvir F t
|
1.
|
0 ( t )
|
1
p
|
2.
|
e t
|
1
p
|
3.
|
e t
|
1
p
|
4.
|
sin at
|
a
p 2 a 2
|
5.
|
cos at
|
p
p 2 a 2
|
6.
|
shat
|
a
p 2 a 2
|
7.
|
chat
|
p
p 2 a 2
|
8.
|
e t s in a t
|
a
( p ) 2 a 2
|
9.
|
e t c o s a t
|
p
( p ) 2 a 2
|
10.
|
t n
|
n !
p n 1
|
11.
|
e t t n
|
n !
( p ) n 1
|
12.
|
e t t n
|
n !
( p ) n 1
|
13.
|
t sin a t
|
2 pa
( p 2 a 2 ) 2
|
14.
|
t cos at
|
p 2 a 2
( p 2 a 2 ) 2
|
15.
|
f ( a t )
|
1 p
F ( )
a a
|
16.
|
e t f ( t )
|
F ( p )
|
17.
|
f ( t )
|
p F ( p ) f ( 0 )
|
18.
|
t
f ( u ) d u
0
|
F ( p )
p
|
19.
|
t n f (t )
|
d n
( 1) n F ( p )
dp n
|
20.
|
f ( t )
t
|
F ( p ) d p
0
|
21.
|
t
f1 ( ) f 2 ( t ) d
0
|
F1 ( p ) F 2 ( p )
|
Tasvirlari ratsional kasr bo’lgan funksiyani topish
Noma‟lum
f t - funksiyani tasviri
( p )
F ( p )
( p )
to‟g‟ri ratsional kasr bo‟lsin.
Ma‟lumki, har qanday to‟g‟ri ratsional kasrni quyidagi ko‟rinishdagi elementar kasrlarni yig‟indisi shaklida ifodalash mumkin:
A A A p B A p B
1 . 2 . 3 . 4 .
p a ( p a ) k p 2 a p b
a 2
( p 2
a p b ) k
b u n d a
4
0 v a
k 2
Bu kasrlarni har biriga nisbatan original funksiyasini topamiz.
A
( p a ) k
1
A
( k 1) !
t k 1 e a t
A p
a
A a
A p B
A p B
2
2
2 2 2
p a p b
p
a 2
2
p
a 2
2
a
p
A 2
B
Aa 1
2 2
p
a 2
2
2
p
a 2
2
Agar birinchi qo‟shiluvchini M, ikkinchisini N bilan ifodalasak , u holda:
M A e
a
2 co s t
, N
B
A a 1
a
e 2 s in t
2
2
a 2 b
A p B t a
e A c o s t b s in t
2
p 2 a p b
4 a 2
b
4
Do'stlaringiz bilan baham: |