|
|
bet | 10/47 | Sana | 06.02.2022 | Hajmi | 4,58 Mb. | | #432370 |
| Bog'liq 111matematika togarak konspekti 10 11 si
2^+1 _|_ ^-m+l
(4т +фт+2 +3m+1)
А) 0,5 • 6~т
kasrni qisqartiring.
С) б
В) I
т-1
D) 3*
Е) 2"
5-2^2+10-2^
8.
|
10k+2
|
ni soddalashtmng.
|
|
|
A) 4_1-5'k
|
В) 4'2-5'k C) 4-5'k D) 2_1-5'k
|
E) 2-5'k
|
|
25га-3 2
|
|
|
9.
|
24n~l
|
ni soddalashtiring.
|
|
|
A) 23n
|
B) 24n+1 C) 24n+2 D) 25n
|
E) 24n
|
|
^4w+3 ^Зи-2
|
|
|
10
|
32и“1
|
ni soddalashtiring.
|
|
|
A) 35n+2
|
В) З5п+3 C) 35n+1 D) 35n_1
|
E) 35n+4
|
11
|
. 5'42n'3-20 (2
|
n'2)4 5 * ifodani soddalashtiring.
|
|
|
A) 2
|
В) 42n C) 4 D) 2n_1
|
E) 0
|
^а+1 ^2 а—1
—^а ning qiymati 9 dan qancha kam?
A) 4,5 В) 3 C) 3,5 D) 4 E) 5,5
Agar 3a_3=l 1 bo‘lsa, 35_a ning qiymatini toping.
113 9 27
А)— В)— C) 99 D)- E) —
7 9 716 7 7ll 7 11
20 dan katta boMmagan barcha natural sonlaming ko‘paytmasi n (neA) ning qanday eng katta qiymatida 2" ga qoldiqsiz boMinadi?
A) 16 B) 20 C) 18 D) 10 E) 14
4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi:
Tekshirdi: OTIBDO‘ :
20 y.
3
|
Г 2^1
|
2 ,
|
f П
|
ЪтпкАп — nm
|
2-
|
nk + — n m
|
-4 —
|
8
|
l 3j
|
9
|
l 2
|
к = 12 kmn2 - kmn2 - kmn2 = 10 kmn2
Misol: Ko‘phadlami ko‘paytiring: (tr +n-\\n2 -2n +2) Yechish: 1-usul:
(n2 + n - ifp2 - 2n + 2) = n4 - 2n3 + 2n2 +n3 - 2n2 =
= n4 -n3 -n2 +4n-2
2-usul:
n2 +n-1
x
n2 -2n +2
4,3 2
n +n -n
+ — 2 n — 2 n + 2 n
n2 +2n-2
n4 -n3 -n2 +4n-2 3. Mustahkamlash. Test yechiladi.
TESTLAR.
1. (2jc-3)2-jc(-4jc+1) ko‘phadni standart shaklga keltiring.
A) 8jc2—jc+7 B) 20jc2-25jc+9 C) 12jc2-25jc+9
2jc2+jc-9 E) 8jc2—13jc+9
2. a(b-c)+b(c-a)-c(b-a) ni soddalashtiring.
A) 2 В) 0 C) 2ab D) -2ac
E)2bc-2ac
(у4-у2+1)(у2+1) - (y-l)(y+l) ni soddalashtirgandan keyin hosil boMgan ko‘phadning nechta hadi boMadi?
A) 5 B) 2 C) 4 D) 3 E) 6
—8—2(1—Z?) -2b+\ ni soddalashtiring.
A)-9 B)9+4b C)9-4b D) 9 E)-9-4b
2x(x-\)-(2x-\)(x+ 1) ko‘phadni standart shaklga keltiring.
A)3jc+1 B)4jc2-5jc+1 C) 2jc2-3jc D) 4jc2-1 E)-3jc+1
(jc-1)(2-jc)+(2jc-3)2 ko‘phadni standart shaklga keltiring.
A) 12jc+4-jc2 B) 3jc2—8 С) 2>x2-9x+l
D) 5jc2+9jc-7 E) 5jc2-10jc+1
a(b+c-bc)-b(c+a-ac)+c(b-a) ni soddalashtiring.
A) ab-ac B) -2bc C) 2ac D) -2abc E) 0
(ал'+2у)(Зл'+Ру)=ул'2+7л'у+у2 ayniyatdagi noma’lum koeffitsientlardan biri a ni toping.
A) 3 B) 2 C) 4 D)| E)|
(ал'-2у)(л'+3у)=ал'2+5.уу-6у2 ayniyatdagi noma’lum koeffitsient a ni toping.
A) | B) 2 C)| D)| E)3
(jc-1)(2-jc)+(jc+3) ko‘phadni standart shaklga keltiring.
A) —jc2+4jc+1 В) 9x+1 C) 3jc2+15jc+7
D) 5jc2+9jc-7 E) 5jc2-10jc+1
Agar P = -x--y-(x + 2y) va Q = -x + -y-(x + 6y) bo‘lsa, R-Q ni toping.
A) jy В)^y C) 4y D)A E)|r
4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi:
Tekshirdi: 0’TIBD0‘ :
20 y.
Do'stlaringiz bilan baham: |
|
|