Noma’lum parametrni statistik baholash. n ta tajriba natijasida biz kuzatayotgan A hodisa m marta ro‘y bersin. U holda, shu ma’lumotlar asosida biz shunday miqdorni aniqlaylikki, uni sifatida qabul qilish mumkin bo‘lsin. Bizning holimizda A hodisaning chastotasini deb qabul qilishimiz tabiiy. Albatta, biz statistik baho deb taklif etayotgan miqdor ma’lum ma’noda noma’lum parametr p ga yaqin bo‘lishi kerak.
Ishonchlilik oralig‘i. Ba’zi hollarda noma’lum parametr p ning aniq qiymati emas, balki 1 ga yetarlicha yaqin ehtimollik bilan uning qiymatini statistik ma’lumotlar asosida aniqlanadigan biror oraliqqa tegishli bo‘lishi qiziqtiradi. Bunda oraliq chegaralari va - t.m.lar faqat m ga bog‘liq bo‘ladi. Tajriba natijasida to‘liq aniqlanadigan oraliq - ishonchlilik oralig‘i deyiladi.
Statistik gipotezalarni tekshirish. Faraz qilaylik, qandaydir (aprior) mulohazalar asosida degan xulosaga keldik. Bu yerda - aniq miqdor. Nisbiy chastota asosida biz statistik gipoteza ning to‘g‘ri yoki noto‘g‘riligini tekshirishimiz kerak. Yetarli katta n lar uchun nisbiy chastota p ehtimollikka yaqin bo‘lgani uchun, statistik gipoteza ni tekshiruvchi alomat ayirma asosida quriladi. Agarda bu ayirma katta bo‘lsa, asosiy gipoteza rad etiladi, agarda bu ayirma yetarlicha kichik bo‘lsa, statistik gipotezani rad etishga asos bo‘lmaydi.
Yuqorida ko‘rsatilgan va boshqa statistik ma’lumotlarni hal etish matematik statistikaning vazifasidir. Matematik statistika bu masalalarni o‘zining tushunchalari va statistik usullari bilan hal etadi.
Bosh va tanlanma to‘plam. Aytaylik, ishlab chiqarilgan mahsulotlarning katta to‘piga tegishli biron-bir xususiyat (masalan, mahsulotning o‘lchami, og‘irligi, narxi va hokazo) o‘rganilayotgan bo‘lsin. To‘pga tegishli barcha mahsulotlar bosh to‘plamni tashkil qiladi deyiladi. Ko‘p hollarda , bosh to‘plamga mahsulotlar juda ko‘p miqdorda bo‘lib, ularning barchasini uzluksiz o‘lchash amaliyotda mumkin bo‘lmaydi. Ba’zi hollarda bu umuman mumkin bo‘lmasa, ayrim hollarda juda katta xarajatlarni talab qiladi. Bunday hollarda bosh to‘plamdan tasodifiy ravishda chekli sondagi mahsulot ajratib olinadi va ularning xususiyatlari o‘rganiladi. Bu jarayon tanlanmalarga olib keladi. Demak, tanlanma bosh to‘plamdan tasodifiy ravishda olingan elementlar. Tanlanmalar usuli deganda biz bosh to‘plamdan tasodifiy ravishda olingan elementlarga xos bo‘lgan qaralayotgan xususiyatlarni statistik tahlil qilib, shular asosida bosh to‘plam elementlariga xos bo‘lgan xususiyatlar haqida umumiy xulosalar chiqarishni tushunamiz.
Matematik statistikada har qanday mulohaza va xulosalar statistik ma’lumotlarga yoki boshqacha qilib aytganda tajriba natijalariga tayanadi. Odatda tajriba natijalari taqsimoti F(x) bo‘lgan X to’plamning kuzatilmalaridan iborat bo‘ladi. Demak, kuzatilmalar bog‘liqsiz va X to’plam bilan bir xil taqsimlangan to’plamlar ekan.
Kuzatilmalardan tuzilgan ( ) vektor hajmi n ga teng bo‘lgan tanlanma deyiladi.
Endi X bilan X to’plam qabul qiladigan qiymatlar to‘plami bo‘lsin. X to‘plam bosh to‘plamdan iborat bo‘ladi. X to‘plam chekli yoki cheksiz bo‘lishi mumkin. Mavzu boshida ko’rilgan misoldagi barcha mahsulotlarning xususiyatlaridan iborat to‘plam-bosh to‘plam va shu xususiyatlarning sonli ifodasi esa X to’plam qiymatlaridan iborat bo‘ladi. Bosh to‘plam X dan qiymatlar qabul qiluvchi X to’plamning taqsimot funksiyasini va sonli xarakteristikalarini (masalan, matematik kutilma, dispersiya, yuqori tartibli momentlar va hokazo) mos ravishda nazariy taqsimot va nazariy sonli xarakteristikalar deyiladi. Kuzatishlar asosida aniqlangan taqsimot funksiya va unga mos sonli xarakteristikalar empirik yoki tanlanma taqsimot funksiyasi va sonli xarakteristikalari deyiladi.
Empirik taqsimot funksiya. Faraz qilaylik, taqsimot funksiyasi F(x) bo‘lgan X t.m. kuzatilayotgan bo‘lsin. ( ) – vektor esa unga mos hajmi n ga teng bo‘lgan tanlanma bo‘lsin. Shu vektorning biron-bir aniq qiymati:
(1.1.1)
X t.m.ning amalga oshgan qiymati deyiladi. Har qanday tajriba natijalari (1.1.1) qatordan iborat bo‘lgan sonlar to‘plami bo‘ladi.
Birinchi satri tajriba nomerlari, ikkinchisi esa X ning mos amaldagi qiymatlaridan iborat bo‘lgan quyidagi jadvalga
-
statistik qator deb ataladi. Statistik qator turli maqsadlarda va turli usullar bilan tahlil qilinishi mumkin. Mana shunday tahlilning maqsadi X t.m.ning empirik(yoki statistik) taqsimot funksiyasini tuzishdan iborat bo‘lishi mumkin.
(1.1.1) qatorni kamaymasligi bo‘yicha tartiblaymiz:
(1.1.2)
hosil bo‘lgan (1.1.2) qator variatsion qator deyiladi.
Ixtiyoriy statistik qator (1.1.1) yordamida empirik yoki tanlanma taqsimot funksiyasi aniqlanishi mumkin.
Quyidagicha
(1.1.3)
aniqlangan funksiya empirik(yoki tanlanma) taqsimot funksiyasi deyiladi. Bu yerda I(A) orqali A hodisa indikatori belgilangan. Statistik qator (1.1.1) t.m.lardan iborat bo‘lgani uchun, empirik taqsimot funksiya ham har bir tayinlangan x da t.m. bo‘ladi.
Tanlanma xarakteristikalari. Ma`lumki, ehtimollar nazariyasida taqsimot funksiyani bilish shu taqsimot funksiyasiga ega bo`lgan to’plam haqida to`liq ma`lumotga ega bo`lishni anglatadi. Ammo juda ko`p amaliy masalalarni hal qilishda t.m.ni to`liq bilish shart bo`lmay, balki uning ayrim sonli xarakteristikalarini bilish kifoya bo`ladi. To’plamning asosiy sonli xarakteristikalari bu-matematik kutilma va dispersiyalardir. Matematik kutilma t.m.ning qiymatlari zich joylashadigan o`rta qiymatni anglatsa, dispersiya esa to’plam qiymatlarini shu o`rta qiymat atrofida qanchalik tarqoqligini bildiradi. Shunga o`xshash sonli xarakteristikalarni statistik taqsimot funksiyasiga nisbatan ham kiritish mumkin. Matematik kutilmaning statistik o`xshashi empirik o`rta qiymat yoki tanlanma o`rta qiymatidan iborat bo`ladi va u (1) amaliy qiymat yordamida quyidagicha aniqlanadi
. (1.1.4)
O‘rta qiymatni quyidagi ko‘rinishda ham yozish mumkin:
, (1.1.5)
bu yerda har bir variantaning mos chastotasidir.
Empirik dispersiya yoki tanlanma dispersiyasi esa quyidagicha aniqlanadi:
, (yoki ) (1.1.6)
r-ichi tartibli tanlanma momentlar va markaziy momentlar ham shunga o`xshash aniqlanadi:
(1.1.7)
Agar tajribalar soni cheksiz katta bo`lsa barcha statistik taqsimot xarakteristikalari nazariy sonli xarakteristikalarga yaqin bo`ladi. Endi shu yaqinlikni o`rganishga kirishamiz.
Misol. Test natijalariga ko‘ra talabalar quyidagi ballarni yig‘dilar: {5,3,0,1,4,2,5,4,1,5}. Ushbu tanlanmaning sonli xarakteristikalarini hisoblang.
Avval ushbu tanlanmaga mos chastotali taqsimot tuzamiz:
(5) va (6) formulalarga asosan:
,
Do'stlaringiz bilan baham: |