Размеўения и перестановки с повторениями и без повторений. Сочетания без повторений и их свойства


ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВА.РАЗБИЕНИЕ МНОЖСТВА НА КЛАССЫ КЛАССИФИКАЦИЯ МНОЖЕСТВА



Download 1,14 Mb.
bet7/16
Sana01.03.2022
Hajmi1,14 Mb.
#476196
1   2   3   4   5   6   7   8   9   10   ...   16
Bog'liq
РАЗМЕЎЕНИЯ И ПЕРЕСТАНОВКИ С ПОВТОРЕНИЯМИ И БЕЗ ПОВТОРЕНИЙ

ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВА.РАЗБИЕНИЕ МНОЖСТВА НА КЛАССЫ КЛАССИФИКАЦИЯ МНОЖЕСТВА
Понятия множества и операций над множествами позволяют уточнить наше представление о классификации – действии распределœения объектов по классам.
Классификацию мы выполняем достаточно часто. Так, натуральные числа представляем как два класса – четные и нечетные. Углы на плоскости разбиваем на три класса: прямые, острые и тупые.
Любая классификация связана с разбиением некоторого множества объектов на подмножества. При этом считают, что множество Х разбито на классы Х₁, Х₂, …, Хn,…, если:
1) подмножества Х₁, Х₂, …, Хn,… попарно не пересекаются;
2) объединœение подмножеств Х₁, Х₂, …, Хn, … совпадает с множеством Х.
В случае если не выполнено хотя бы одно из условий, классификацию считают неправильной. К примеру, если из множества Х треугольников выделить подмножества равнобедренных, равносторонних и разносторонних треугольников, то разбиения мы не получим, поскольку подмножества равнобедренных и равносторонних треугольников пересекаются (всœе равносторонние треугольники являются равнобедренными). В данном случае не выполнено первое условие разбиения множества на классы.
Так как разбиение множества на классы связано с выделœением его подмножеств, то классификацию можно выполнять при помощи свойств элементов множеств.
Рассмотрим, к примеру, множество натуральных чисел. Его элементы обладают различными свойствами. Положим,. что нас интересуют числа, обладающие свойством «быть кратным 3». Это свойство позволяет выделить из множества натуральных чисел подмножество, состоящее из чисел, кратных 3. Тогда про остальные натуральные числа можно сказать, что они не кратны 3, ᴛ.ᴇ. получаем еще одно подмножество множества натуральных чисел. Так как выделœенные подмножества не пересекаются, а их объединœение совпадает с множеством натуральных чисел, то имеем разбиение этого множества на два класса.
N N

Вообще, если на множестве Х задано одно свойство, то это множество разбивается на два класса. Первый - ϶ᴛᴏ класс объектов, обладающий этим свойством, а второй – дополнение первого класса до множества Х. Во втором классе содержатся такие объекты множества Х, которые заданным свойством не обладают. Такую классификацию называют дихотомической.
Рассмотрим ситуацию, когда для элементов множества заданы два свойства. К примеру, «быть кратным 3» и «быть кратным 5». При помощи этих свойств из множества натуральных чисел можно выделить два подмножества: А – подмножество чисел, кратных 3, и В – подмножество чисел, кратных 5. Эти множества пересекаются, но ни одно из них не является подмножеством другого. Проанализируем получившийся рисунок (справа). Конечно, разбиения множества натуральных чисел на подмножества А и В не произошло. Но круг, изображающий множество N, можно рассматривать как состоящий из четырех непересекающихся областей – на рисунке они пронумерованы. Каждая область изображает неĸᴏᴛᴏᴩᴏᴇ подмножество множества N. Подмножество I состоит из чисел, кратных 3 и 5; подмножество II – из чисел, кратных 3 и не кратных 5; подмножество III – из чисел, кратных 5 и не кратных 3; подмножество IY – из чисел, не кратных 3 и не кратных 5. Объединœение этих четырех подмножеств есть множество N.
Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выделœение двух свойств привело к разбиению множества N натуральных чисел на четыре класса. Не следует думать, что задание двух свойств элементов множества всœегда приводит к разбиению этого множества на четыре класса. К примеру, при помощи двух таких свойств «быть кратным 3» и «быть кратным 6» множество натуральных чисел разбивается на три класса: I – класс чисел, кратных 6; II – класс чисел, кратных 3; но не кратных 6; III - класс чисел, не кратных 3.

Используя две цифры, к примеру, 3 и 5, можно записать четыре двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, в математике говорят об упорядоченных наборах элементов. В рассмотренном примере мы имели дело с упорядоченными парами.
Упорядоченную пару, образованную из элементов а и b, принято записывать, используя круглые скобки: (а; b). Элемент а называют первой координатой (компонентой) пары, а элемент b – второй координатой (компонентой) пары.
Пары (а; b) и (с; d) равны в том и только в том случае, когда а = с и b = d.
В упорядоченной паре (а; b) может быть, что а = b. Так, запись чисел 33 и 55 можно рассматривать как упорядоченные пары (3; 3) и (5; 5).
Упорядоченные пары можно образовывать как из элементов одного множества, так и двух множеств. Пусть, к примеру, А = {1, 2, 3}, В = {3, 5}. Образуем упорядоченные пары так, чтобы первая компонента принадлежала множеству А, а вторая компонента – множеству В. В случае если мы перечислим всœе такие пары, то получим множества:
{(1; 3), (1; 5) (2; 3), (2; 5), (3; 3), (3; 5)}.
Видим, что, имея два множества А.и В, мы получили новое множество, элементами которого являются упорядоченные пары чисел. Это множество называют декартовым произведением множеств А и В.

Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   16




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish