Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet328/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   324   325   326   327   328   329   330   331   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 10.9-2
Obtain the solution in zero-input response 

zero-state response form for the problem stated in 
Example 10.9-1 and modify the solution for (i) initial condition changed to 2A, (ii) voltage source 
magnitude changed to 5V and (iii) voltage source magnitude changed to 4V and current source 
magnitude changed to 1A along with initial condition changed to 2A.
Solution
When we want the solution in zero-input response 

zero-state response format, we have to split the 
given circuit into two sub circuits right at the outset – one containing all independent sources and with 
zero initial condition for inductor current and the second with all independent sources deactivated and 
initial condition for inductor current at the specified value.
These two circuits are shown in Fig. 10.9-5 (a) and (b). The solution of Fig. 10.9-5 (b) gives the 
zero-input response. The solution of Fig. 10.9-5 (a) gives zero-state response. Zero-state response obeys 
superposition principle. Hence, the zero-state response of circuit in Fig. 10.9-5 (a) with the two sources 
acting simultaneously can be obtained by summing the zero-state responses when they are acting alone. The 
circuits required for finding out these individual zero-state responses are given in Fig. 10.9-5 (c) and (d).
Step 1 – Find the time constant 
This step is the same as in Example: 10.9-1 and the value of time constant 
t

0.1 s.
Step 2 – Find the zero-input response
The initial value of i
x
at t 

0

is 0.5A from circuit in Fig. 10.9-5 (b). Since there is no source, the 
particular integral will be zero. Therefore, the zero-input response is 0.5 e 
-
10 t
.
Step 3 – Find the zero-state response in circuit in Fig. 10.9-5 (c)
The initial value of i
x
at t 

0

is 0.5A from circuit in Fig. 10.9-5 (c). Final steady-state value is obtained 
by replacing the inductor by short-circuit and solving the resulting resistive circuit. 2/(2

2//1) is the 
current from voltage source. This gets divided between 2
W
and 1
W
. The value is 0.25A. Therefore, the 
solution is 

0.25(1

e 
-
1
0
t
).
Fig. 10.9-4 
The plot of current waveform 
for Example: 10.9-1 
i
x
(
t
)
0.25
0.1 0.2 0.3 0.4 0.5 0.6
0.5
0.375
0.75
1
Time
1.25


10.52
First-Order 
RL
Circuits





+


0.2 H
0.5 
u
(
t
)

u
(
t
)
IC
= 0 A
(a)
i
x





+


0.2 H

u
(
t
)
IC
= 0 A
(c)
i
x






0.2 H
IC
= 0 A
(d)
i
x






0.2 H
IC
= 1 A
(b)
i
x
0.5 
u
(
t
)
Fig. 10.9-5 
Circuits for solving zero-input and zero-state responses in Example: 10.9-2 
Step 4 – Find the zero-state response in circuit in Fig. 10.9-5 (d)
The initial value of i
x
at t 

0

is 0.25A from circuit in Fig. 10.9-5 (d). Final steady-state value is 
obtained by replacing the inductor by short-circuit and solving the resulting resistive circuit. Applying 
current division principle, we get the value as 0.125A. Therefore, the solution is 

0.125(1

e 
-
10 t
).
Step 5 – Find the total zero-state response in circuit Fig. 10.9-5 (a)
Total zero-state response is obtained by adding the two zero-state responses obtained in the last two 
steps. It is 0.25(1

e 
-
10 t


0.125(1

e 
-
10 t


0.375(1

e 
-
10 t
).
Step 6 – Find the total response in the original circuit 
This is obtained by adding the zero-input response obtained in Step-1 and total zero-state response 
obtained in Step 5. It is 0.5 e 
-
10 t

0.375(1

e 
-
10 t


0.375 

0.875 e 
-
10 t
. It is the same expression we 
obtained in Example 10.9-1.
(i) If initial condition is changed to 2A
This change will affect only zero-input response. Zero-input response obeys superposition 
principle. Therefore, the zero-input response becomes (0.5 e 
-
10 t
) x 2/1 

e 
-
10 t
.
Therefore, i
x
(t

e 
-
10 t

0.375(1

e 
-
10 t


0.375 

1.375 e 
-
10 t
A for t 

0
+
.
(ii) If voltage source value is changed to 5V
This change will affect the zero-state response contribution from voltage source only. 
It was 0.25(1

e 
-
10t
) when voltage source value was 2V. Therefore, applying superposition 
principle, it will be 2.5 times this function with voltage source value of 5V. 
Therefore, 
i
x
(t

0.5 e 
-
10 t

2.5x 0.25(1

e 
-
10 t


0.125(1

e 
-
10 t


0.75 

1.25 e 
-
10 t
A for t 

0
+
.
(iii) If voltage source value is changed to 4V, current source value changed to 1A and initial 
condition changed to 2A
The solution will get affected in all the three components. Zero-input response gets scaled by 2/1, 
zero-state response from voltage source gets multiplied by 4/2 and zero-state response from current 
source gets multiplied by 1/0.5. 
Therefore, 
i
x
(t

2x0.5 e 
-
10 t

2x 0.25(1

e 
-
10 t


2x0.125(1

e 
-
10 t
)

0.75 

1.75 e 
-
10 t
A for t 

0


Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   324   325   326   327   328   329   330   331   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish