Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet259/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   255   256   257   258   259   260   261   262   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

I
1
I
R
I
Y
R
Y
B
20 

20 

20 

j
0.5 

j
0.5 

j
0.5 

I
2
I
3
I
B
Fig. 8.4-2 

Unbalanceddelta-connectedsourcesupplyingaY-connectedloadinExample8.4-2
Solution
The mesh currents are assigned as shown in Fig. 8.4-2.The mesh equations are written in matrix form 
by inspection.
j
j
j
j
j
j
j
I
I
1 5
0 5
0 5
0 5 40
0 5
20
0 5
20
40
0 5
1
2
.
.
.
.
.
.
.



+



+










II
3
400 0
370
120
370 120
400 0
370
120










=

∠ ° +
∠ −
° +

°
∠ °
∠ −
°

(
)









=

∠ °
∠ −
°










30
400 0
370
120
Solving for 
I
1

I
2
and 
I
3
,
I
1
=
14.98

77.64
°
A rms, 
I
2
=
11.12
∠-
29.2
°
A rms and
 I
3
=
10.68
∠-
90.48
°
A rms.
Now, the line currents are 
I
R
=
I
2
=
11.12
∠-
29.2
°
A rms, 
I
Y
=
I
3
 
-
 
I
2
=
11.116
∠-
151.77
°
A rms 
and 
I

=
-
I
3
=
10.68

89.52
°
A rms.
Current delivered by 400

0
°
V rms source 
=
I
2
 

 
I
1
=
21.08
∠-
72.04
°
A rms
Current delivered by 370
∠-
120
°
V rms source 
=
I
3
 

 
I
1
=
25.53
∠-
97.42
°
A rms
Current delivered by 370

120
°
V rms source 
=

 
I
1
=
14.98
∠-
102.36
°
A rms
Power delivered to load 
=
[11.12
2

11.12
2

10.68
2
]
× 
20 
=
7227.4 W
Power delivered by 400

0
°
V rms source 
=
400
× 
21.08
× 
cos(72.04
°

=
2600.3 W
Power delivered by 370
∠-
120
°
V rms source 
=
370
× 
25.53
× 
cos(
-
120
°

97.42
°

=
8772 W
Power delivered by 370

120
°
V rms source 
=
370
× 
14.98
× 
cos(120
°

102.36
°

=
-
4095.57 W
Notice the marked deviation in phase-source currents from the levels we expect from the observed 
line currents. We would have expected about 6 – 7 A rms in the sources considering the fact that the 
line currents are around 11 A rms. The circulating current due to the residual delta-loop voltage of 
30 V rms makes the delta currents much larger than what they need to be in view of load power. This 
results in excess power being delivered by some branches, forcing the remaining branch to absorb 
power rather than deliver it. This is why the 370

120
°
V rms source had to absorb a large quantity of 
power.
Of course, the delta-connected source used in this example can be of no practical use. A delta-
connected source is of practical utility only if the residual voltage within the delta-loop can be kept at 
zero or a value quite low compared to source voltage.
The line voltages appearing across the load can be calculated by subtracting the voltage drop in the 
source impedance of each phase-source from its source voltage value. The result of this calculation is 
V
RY
=
390
∠-
0.48
°
V rms, 
V
YB
=
375.3
∠-
121.8
°
V rms and 
V
BR
=
375.3
∠-
120.83
°
V rms.


8.24
Sinusoidal Steady-State in Three-Phase Circuits 
8.5 
Symmetrical componentS
Analysis of balanced three-phase circuits is considerably simpler than analysis of unbalanced three-
phase circuits. Three-phase symmetry exhibited by a balanced circuit makes it possible to solve the 
circuit employing a single-phase equivalent circuit. This prompts us to ask the question – is it possible 
to bring back the symmetry enjoyed by a balanced circuit into an unbalanced three-phase circuit by 
some means?
We realise that an unbalanced three-phase circuit can result from unbalanced three-phase sources 
acting on balanced loads or balanced sources acting on unbalanced loads or unbalanced three-phase 
sources acting on unbalanced loads. Let us tackle the first case – unbalanced three-phase sources 
acting on balanced loads.
8.5.1 
three-phase circuits with Unbalanced Sources and Balanced loads
In this case, maybe we can bring three-phase symmetry back into the circuit if we can somehow 
express the unbalanced three-phase source voltages/currents as a superposition of balanced sets of 
three-phase voltages/currents. Is that possible?
Specialised version of a general theorem called Fortesque’s Theorem assures us that it is possible. 
If a set of unbalanced three-phase source functions can be expressed as a sum of balanced sets of 
three-phase source functions, then, the solution of unbalanced three-phase circuit can be obtained as a 
superposition of solution of the circuit for various balanced sets of three-phase source functions. If all 
the loads are balanced, each of the circuit problems that needs to be solved for applying superposition 
principle, will be a balanced circuit problem. Thus, symmetry can be restored to unbalanced three-
phase circuits this way, provided the unbalance is only due to sources and not due to loads. The sets 
of three-phase balanced source components and possible single-phase components of an unbalanced 
source are called its Symmetrical Components.
There are three symmetrical components for an unbalanced three-phase source function. 
Each symmetrical component is a set of three source functions.
The first set – called the 
positive sequence component
– is a balanced three-phase set of source functions that 
has positive phase sequence. The second set – called the 
negative sequence component
– 
is a balanced three-phase set of source functions that has negative phase sequence. 
The third set – called the 
zero sequence component
– is a set of three cophasal (
i.e.,
of 
same phase) single-phase source functions. 
It is not a three-phase set at all.
Symmetrical components are denoted by the first phasor element in each set. Thus, positive 
sequence component is denoted by R-phase quantity or R-line quantity of the balanced three-phase 
source function of positive phase sequence in phasor form. Similarly, negative sequence component 
is denoted by R-phase quantity or R-line quantity of the balanced three-phase source function of 
negative phase sequence in phasor form. Further, zero sequence component is denoted by one of the 
three cophasal single-phase source functions.
For instance, let 200
∠-
10
°
, 100
∠-
50
°
and 25
∠-
30
°
be the rms values of positive, negative and zero 
sequence components of some unbalanced phase voltage set. Then, 200
∠-
10
°
stands for a three-phase 
balanced voltage set (200
∠-
10
°
, 200
∠-
130
°
, 200

110
°
) in RN, YN and BN phase voltages, respectively. 
The 100
∠-
50
°
negative sequence component stands for (100
∠-
50
°
, 100

70
°
, 100
∠-
170
°
) in RN, 
YN and BN phase voltages, respectively. Note the phase sequence of the bracketed quantity. The zero 
sequence component of 25
∠-
30
°
stands for (25
∠-
30
°
, 25
∠-
30
°
, 25
∠-
30
°
) in RN, YN and BN phase 


SymmetricalComponents

8.25
voltages, respectively. Then, by Fortesque’s Symmetrical Components Theorem, the phase voltages are 
given by 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   255   256   257   258   259   260   261   262   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish