Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet255/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   251   252   253   254   255   256   257   258   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 8.3-1
A balanced Y-connected load with phase impedance of 7.9

j5.7 
W
at 50 Hz is supplied from a 
400V, 50 Hz balanced Y-connected source through connection impedance of 0.1

j0.3 
W
in each line. 
(i) Find the line current and load voltage. (ii) Find the active and reactive power delivered by the 
source and delivered to the load.
Solution
It is a Y–Y connection already. The single-phase equi-
valent circuit required for solving the problem is shown 
in Fig. 8.3-3.
A three-phase source is specified by specifying line-
to-line voltage rms value. Thus, the source voltage in 
single-phase equivalent must be 400/


=
230.9 V rms 
in magnitude. The R-phase source voltage is taken as the 
reference phasor with an angle of 0
°
. Solving the circuit 
in Fig. 8.3-3, we get, 
I
R
=
∠ °
+
+
+
=
∠ °
+
=
∠ °

230 9 0
0 1
0 3
7 9
5 7
230 9 0
8
6
230 9 0
10 3
.
( .
. ) ( .
. )
.
.
j
j
j
66 9
23 09
36 9
23 09
36 9
7 9
5 7
2
.
.
.
.
.
.
.
°
=
∠ −
°
=
∠ −
° ×
+
(
)
=
A rms.
V
L
j
33 09
36 9
9 74 35 8
224 9
1 1
.
.
.
.
.
.
.
∠ −
° ×

° =
∠ −
°
V rms
Active power delivered by source 
=
3 230 23 09
0
36 9
12 75
×
×
×
− −
° =
.
cos(
(
. ))
. kW
Reactive power delivered by source 
=
3 230 23 09
36 9
9 56
×
×
×
° =
.
sin( . )
. kVAr
Active power delivered to load 
=
3 224 9 23 09
1 1
36 9
12 64
×
×
×
− ° − −
° =
.
.
cos(
.
(
. ))
. kW
Reactive power delivered to load 
=
3 224 9 23 09
1 1
36 9
9 11
×
×
×
− ° − −
° =
.
.
sin(
.
(
. ))
. kVAr
Magnitude of line voltage across load 
=
3 224 9 389 56
×
=
.
. V rms
I
R
R
N
S
,N
L
0.1 + 
j
0.3 

7.9 + 
j
5.7 

230.9
V rms

+

+

V
L
Fig. 8.3-3 

Single-phaseequivalent
forExample8.3-1


8.14


SinusoidalSteady-StateinThree-PhaseCircuits
Complete Phasor Solution
Phase voltages at source: 230

0
°
, 230
∠-
120
°
, 230

120
°
(V rms)
The first line voltage, i.e., 
V
RY
, is known to lead the first phase voltage, i.e., 
V
RN
,
 
by 30
°
. Therefore, 
line voltages at source terminals: 400

30
°
, 400
∠-
90
°
, 400

150
°
(V rms)
Phase voltages at load: 224.9
∠-
1.1
°
, 230
∠-
121.1
°
, 230

118.9
°
(V rms)
Line voltages at load terminals: 389.56

28.9
°
, 389.56
∠-
91.1
°
, 389.56

148.9
°
(V rms)
Line currents: 23.09
∠-
36.9
°
, 23.09
∠-
156.9
°
, 23.09

83.1
°
(A rms)
Complex power delivered by source 
=
3 400 23 09
0
36 9
16 36 9
×
×
∠ −
° = ∠
°
.
(
( . ))
. kVA
Complex power in load 
=
3 389 56 23 09
1 1
36 9
15 54 35 8
×
×
∠ −

° =

°
.
.
(
.
( . ))
.
. kVA
example: 8.3-2
A balanced 
D
-connected load with phase impedance of 23.7

j17.1 
W
at 50 Hz is supplied from a 
400 V, 50 Hz balanced Y-connected source through connection impedance of 0.1

j0.3 
W
in each line. 
(i) Find the line current and load voltage. (ii) Find the load-branch currents. (iii) Find the active and 
reactive power delivered by the source and delivered to the load.
Solution
The circuit with all the relevant phasors identified is shown in Fig. 8.3-4.
230.9


V rms
230.9

–120° 
V rms
230.9

120° 
V rms



+
+
+
I
R
I
B
I
Y
I
RY
I
YB
I
BR
R
N
Y
B
0.1 +
 j
0.3 

0.1 +
 j
0.3 

0.1 +
 j
0.3 

23.7 +
 j
17.1 

23.7 +
 j
17.1 

23.7 +
 j
17.1 

Fig. 8.3-4 

AY-connectedsourcedeliveringpowertoa
D
-connectedloadthroughconnection
impedance
The delta-connected impedance is transformed into an Y-connected one by star-delta transformation 
equations. Since the delta impedances are equal, the impedance in star connection will be one-third of 
delta branch impedance, i.e., 7.9 

j5.7 
W
. The circuit after this transformation is shown in Fig. 8.3-5.
Now, the single-phase equivalent of this circuit can be identified as the same as in Example: 8.3-1 
and hence the solution is same as in that example.
\
Line current (R) 
=
23.09
∠-
36.9
°
A rms, Load phase voltage (R) 
=
224.9
∠-
1.10 V rms and Load 
line voltage (RY) 
=
389.56

28.9
°
V rms.
Load active power can be found as 3
× 
224.9
× 
23.09
× 
cos(36.9
°-
1.1
°
) or as 

3
× 
389.56
× 
23.09
× 
cos(36.9
°-
1.1
°
). The value is 12.64 kW. Similarly, the load reactive power is 3
× 
224.9
× 
23.09
× 
cos(36.9
°-
1.1
°
) or 

3
× 
389.56
× 
23.09
× 
cos(36.9
°-
1.1
°
). The value is 9.11 kVAr.


AnalysisofBalancedThree-PhaseCircuits

8.15
Branch Currents in Delta-connected Load 
Applying KCL at the corners of delta in R-line and Y-line in Fig. 8.3-4, we get
I
RY
– 
I
BR
=
I
R
and 
I
YB
– 
I
RY
=
I
Y
Multiplying the second equation by –1 and adding the result to the first equation, we get
2
I
RY
– (
I
BR

I
YB

=
I
R
-
I
Y
But (
I
RY

I
BR

I
YB

=
0 since we expect these three currents to be a three-phase balanced set. 
Therefore, 
-
(
I
BR

I
YB

=
I
RY
.
Therefore, 2
I
RY

I
RY 
=
I
R
-
I
Y

I
RY 
=
(
I
R
-
I
Y
)/3.
We know that 
I
R
=
23.09
∠-
36.9
°
A rms. 
I
R

I
Y
and 
I
B
form a balanced three-phase set of phasors. 
Therefore, 
I
Y
=
23.09
∠-
156.9
°
A rms.
\
3
 I
RY
=
(23.09
∠-
36.9
°
-
23.09
∠-
156.9
°
) A rms.
This is the difference between two phasors with 120
°
between them. We have determined the result 
of this kind of difference operation before. The result will have a magnitude that is 

3
× 
23.09 and will 
lead the first quantity in the difference by 30
°
.
\
 
3
I
RY
=
40
∠-
6.9
°
and 
I
RY
=
13.33 
∠-
6.9
°
A rms.
This can also be obtained by observing that RY line voltage at load is 389.56

28.9
°
V rms and 
I
RY 
is the current drawn by 23.7

j17.1
W
(29.225

35.8
°
W
) from this voltage.
Therefore, 
I
RY
=
389.56

28.9
°
÷
29.225

35.8
°
=
13.33
∠-
6.9
°
A rms as before.
Now, the remaining two branch currents can be obtained by using three-phase symmetry as 
I
YB
=
13.33
∠-
126.9
°
A rms and 
I
BR
=
13.33
∠-
113.1
°
A rms
example: 8.3-3
A delta-connected source with an open-circuit voltage of 200 V rms at 50 Hz is used to deliver power 
to a star-connected load with phase impedance of 5.9

j7.7 
W
. Each phase source in the 
D
-connected 
source has internal impedance of 0.3

j0.9 
W
in series with it. (i) Find the phase voltage and line 
voltage across the load. (ii) Find the line currents and delta branch currents. (iii) Find the active power 
and reactive power delivered to the load and consumed by the internal impedance of the source.
Solution
The three-phase circuit to be analysed is shown in Fig. 8.3-6.
230.9

0° V rms
230.9

120°
V rms
230.9

–120° V rms



+
+
+
I
R
I
B
I
Y
R
N
Y
B
0.1 +
 j
0.3 

0.1 +
 j
0.3 

0.1 +
 j
0.3 

7.9 +
 j
5.7 

7.9 +
 j
5.7 

7.9 +
 j
5.7 

Fig. 8.3-5 
TheY-connectedequivalentofcircuitinFig.8.3-4


8.16


SinusoidalSteady-StateinThree-PhaseCircuits
200

–120°
V rms
200

0° V rms
200

120° V rms



+
+
+
I
R
I
1
I
2
I
3
I
B
I
Y
R
Y
B
0.3 +
 j
0.9 

0.3 +
 j
0.9 

0.3 +
 j
0.9 

5.9 +
 j
7.7 

5.9 +
 j
7.7 

5.9 +
 j
7.7 

Fig. 8.3-6 

A Delta-connected source with source impedance supplying a star-connected
load
The open-circuit line voltage across source terminals is given to be 200 V rms. The balanced delta 
connection shown in Fig. 8.3-6 will not have any current in delta when the terminals are left open 
since the loop voltage inside delta is zero. Therefore, the source voltages must themselves be 200 V 
rms. A straightforward determination of Y-equivalent of delta connected source is not possible in this 
case. We transform the ‘voltage source in series with impedance combinations’ into ‘current source 
in parallel with impedance combinations’ by using source transformation theorem. This is shown in 
Fig. 8.3-7.
200

–120°
V rms
200

120° V rms
200

0° V rms



+
+
+

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   251   252   253   254   255   256   257   258   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish