Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet263/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   259   260   261   262   263   264   265   266   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 8.5-1
An unbalanced 4-wire system is shown in Fig. 8.5-2. (i) Find the symmetrical components of the 
source phase voltages. (ii) Determine the line voltages at the source and verify that line voltage does 
not contain zero sequence component. (iii) Determine the line currents and neutral current by using 
symmetrical components. (iv) Find the load neutral voltage with respect to earth. (v) Find the phase 
voltages and line voltages across the load by symmetrical components. (vi) Find the total power 
delivered by source and delivered to load using symmetrical components.
240

140°
V rms
230


V rms
190

–120°
V rms



+
+
+
I
R
I
N
I
y
I
B
R
G
B
Y
N
Load
V
0.1 +
 j
0.3 

0.1 +
 j
0.3 

0.1 +
 j
0.3 

7.9 +
 j
5.7 

7.9 +
 j
5.7 

7.9 +
 j
5.7 

0.1 +
 j
0.3 

Fig. 8.5-2 
Unbalancedthree-phasecircuitforExample8.5-1
Solution
(i) 
V
V
V
a
a
a
a
V
V
V
s
s
s
sRG
sYG
sBG
0
2
2
1
3
1
1
1
1
1
+











=




















. The subscript‘
s
’ stands for source quantities. Substituting 
a
=
1

120
°

V
sRN
=
230

0
°

V
sYN
=
190
∠-
120
°
and 
V
sBN
=
240

140
°

V
V
V
s
s
s
0
1
3
1
1
1
1
1 120
1
120
1 1
120
1 120
+











=

°
∠ −
°
∠ −
°

°










∠ °
∠ −
°

°










=
∠ −
°
230 0
190
120
240 140
16 64
168 12
216
.
.
.991 7 25
39 25
37 58

°
∠ −
°










.
.
.
.
V rms


8.30


SinusoidalSteady-StateinThree-PhaseCircuits
(ii) Line voltages are obtained as below.
V
V
V
sRY
sRG
sYG
=

=
∠ ° −
∠ −
° =
+
=

°
230 0
190
120
325
164 54 364 28 26 85
j
.
.
.
V
Vrms
V
V
V
sYB
sYG
sYG
=

=
∠ −
° −

° =

=
190
120
240 140
88 85
318 81 330 9
.
.
.
j
66
74 43
240 140
230 0
413 85
154
∠ −
°
=

=

° −
∠ ° = −
+
.
.
Vrms
V
V
V
sBR
sBG
sRG
j
..
.
.
(
. ) ( .
27 441 67 159 56
325
164 54
88 8
=

°
+
+
=
+
+
Vrms
V
V
V
sRY
sYB
sBR
j
55
318 81
413 85
154 27 0
0

+ −
+
= +
j
j
j
. ) (
.
.
)
Therefore, zero sequence component in line voltage is zero.
(iii) The circuit is solved for the three symmetrical 
components by applying superposition principle. 
We apply the positive sequence voltage source 
component first and obtain the positive sequence 
component of line currents and neutral current. 
We note that the connection impedances and 
load impedances are balanced. Therefore, we can 
use single-phase equivalent circuit for obtaining 
currents. The single-phase equivalent circuit is 
shown in Fig. 8.5-3. The source neutral and load 
neutral are at the same potential and hence the 
neutral impedance of 0.1

j0.3 
W
will not appear 
in the single-phase equivalent circuit for positive 
sequence component.
Therefore, 
I

=
216.91

7.25
°
÷
(8

j6) 
=
21.69
∠-
29.62
°
A rms.
The single-phase equivalent circuit for negative 
sequence input is shown in Fig. 8.5-4. Passive 
balanced impedance cannot differentiate between 
positive phase sequence and negative phase 
sequence. However, this is not true in the case of 
all electrical equipment. AC motors can distinguish 
between the two and hence the equivalent circuits of motors will be different for the two phase 
sequences. 
The load circuit is balanced. Negative sequence component is a balanced component. 
Therefore, neutral potential at source and load will be the same and the neutral impedance will 
not appear in the single-phase equivalent circuit for negative sequence input too.
Therefore, 
I
-
=
39.25
∠-
37.58
°
÷
(8

j6) 
=
3.925
∠-
74.45
°
A rms.
The circuit to be solved with zero sequence input is shown in Fig. 8.5-5.
Note that all the three voltage sources have the same phase and hence all the three lines R,Y 
and B will carry cophasal currents in the same direction. Therefore, the neutral return current 
will be 3
I
0
. Applying KVL in any one mesh, we get,
[(8

j6)

3
× 
(0.1

j0.3)] 
× 
I
0
=
16.64
∠-
168.12
°

I
0
=
1.542

152.14
°
A rms
Note that the effective value of neutral line impedance in limiting the zero sequence current 
is three times its actual value due to 3
I
0
flowing in it.
Now, the line currents can be obtained by applying symmetrical component transformation 
equation.
I
+

+
0.1 + 
j
0.3 

7.9 + 
j
5.7 

V
 
rms
7.25º
216.91
G
R
Fig. 8.5-3 

Single-phaseequivalent
circuitofthecircuitin
Fig.8.5-2forpositive
sequencecomponent
I
G


+
0.1 + 
j
0.3 

7.9 + 
j
5.7 

39.25

–37.58°
V rms
R
Fig. 8.5-4 

Single-phaseequivalent
circuitofthecircuitin
Fig.8.5-2fornegative
sequencecomponent


Symmetrical Components 
8.31
I
I
I
a
a
a
a
I
I
I
R
Y
B
0










=




















+

1
1
1
1
1
2
2
The result will be, 
I
R
=
23.106
∠-
36.62
°
A rms, 
I
Y
=
18.86
∠-
156.75
°
A rms and 
I
B
=
23.984
∠-
102.78
°
A rms.
Neutral current can arise only from zero sequence component of source voltage since 
the remaining two components are balanced three-phase components and the load circuit is 
balanced. Hence, neutral current 
=
3
I
0
=
4.63

152.14
°
A rms.
(iv) Load neutral voltage with respect to earth 
=
neutral current 
× 
neutral impedance, since the 
source neutral is earthed. The value is 
=
4.63

152.14
°
× 
(0.1

j0.3) 
=
1.463 
∠-
136.3
°
V rms.
(v) The symmetrical components of load phase voltages can be obtained as
V
V
V
l
l
l
0
+
-










=
+
+
+








7 9
5 7
0
0
0
7 9
5 7
0
0
0
7 9
5 7
.
.
.
.
.
.
j
j
j












I
I
I
0
+
-
The values are 
V
l
0
=
15.018
∠-
172.05
°
V rms, 
V
l

=
211.305

6.2
°
V rms and 
V
l
-
=
38.237
∠-
38.64
°
V rms. Now, the load phase voltages can be determined by symmetrical components 
transformation.
V
V
V
a
a
a
a
V
V
V
l
lRN
lYN
lBN
0
l
l










=















1
1
1
1
1
2
2
+
-





The values obtained on substitution of sequence component values are,
V
lRN
=
225.09
∠-
0.81
°
V rms, 
V
lYN
=
183.73
∠-
120.93
°
V rms and 
V
lBN
=
233.65

138.54
°
V rms.
The load line voltages are found as
V
V
V
lRY
lRN
iYN
=

=
∠ −
° −
− ∠ −
°

225 09
0 81
183 73
120 93
25 8
.
.
.
.
.
=354.87
°°
=

=
∠ −
° −

°
V rms
=322
V
V
V
lYB
lYN
iBN
183 73
120 93
233 65 138 54
.
.
.
.
..41
V rms
∠ −
°
=

=

° −
∠ −
75 5
233 65 138 54
225 09
0 8
.
.
.
.
.
V
V
V
lBR
lBN
iRN
11
158 5
°

°
=430.26
V rms
.
I
o
I
o
I
o
Load
B
V
R
Y
N
3
 
I
o
G



+
+
+
0.1 + 
j
0.3 

0.1 + 
j
0.3 

0.1 + 
j
0.3 

0.1 + 
j
0.3 

7.9 + 
j
5.7 

7.9 + 
j
5.7 

7.9 + 
j
5.7 

16.64

–168.12°
16.64

–168.12°
16.64

–168.12°
V rms
V rms
V rms
Fig. 8.5-5 
Circuit with only zero sequence component of input voltage acting in the circuit 
in Fig. 8.5-2 


8.32


SinusoidalSteady-StateinThree-PhaseCircuits
(vi) The values of sequence components at source end are 
V
V
V
s
s
s
0
16 64
168 12
216 91 7 25
39 2
=
∠ −
°
=

°
=
+

.
.
.
.
.
V rms; 
V rms; 
55
37 58
∠ −
°
.
V rms
and 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   259   260   261   262   263   264   265   266   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish