Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet260/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   256   257   258   259   260   261   262   263   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

V
V
RN
YN
=
∠ − ° +
∠ − ° +
∠ − ° =
∠ −
°
=

200
10
100
50
25
30
308 8
23 64
200
V rms
.
.
−−
° +
∠ ° +
∠ − ° =
∠ −
°
=

° +
130
100 70
25
30
109 4
131 7
200 110
10
V rms
.
.
V
BN
00
170
25
30
214 66 132 6
∠ −
° +
∠ − ° =

°
V rms
.
.
The phase voltage set is an unbalanced one and we have expressed it as a sum of three components –
one balanced positive sequence three-phase voltage, one balanced negative sequence three-phase 
voltage and one single-phase voltage.
We could have expressed these equations in another format too.
V
V
RN
YN
= ×
∠ − ° + ×
∠ − ° + ×
∠ − °
= ∠ −
° ×
∠ − ° +
1 200
10
1 100
50
1 25
30
1
120
200
10
1


° ×
∠ − ° + × ∠ − °
= ∠
° ×
∠ − ° + ∠ −
° ×
∠ −
120
100
50
1 25
30
1 120
200
10
1
120
100
V
BN
550
1 25
30
° + × ∠ − °
Let us define a constant complex number 
a
as 
a
 
=
 
1

120
°
. When a phasor is multiplied by this 
operator, its magnitude stays unaffected, but it gets rotated in counter clockwise direction by 120
°

Then, 
a
2
=
1

240
°
=
1
∠-
120
°
is the operator that can rotate a phasor by 120
°
in clockwise direction. 
Note that 1

a

a
2
=
0, 
a

=
a
*

a
3
=
1

0
°
and 
a
4
=
a
. Now, the above equations can be expressed in 
terms of this operator 
a
as
V
V
a
a
RN
YN
= ×
∠ − ° + ×
∠ − ° + ×
∠ − °
=
×
∠ − ° + ×

1 200
10
1 100
50
1 25
30
200
10
100
2
−− ° + × ∠ − °
= ×
∠ − ° +
×
∠ − ° + × ∠ − °
50
1 25
30
200
10
100
50
1 25
30
2
V
a
a
BN
Now, let us introduce 
X


X
-
and 
X
0
as the values of positive, negative and zero sequence 
components (note that they are phasors) of some voltage or current instead of the three numbers – 
200
∠-
10
°
, 100
∠-
50
°
and 25
∠-
30
°
– we used till now. Then, the unbalanced quantities are given in 
terms of symmetrical components (i.e., 
X


X
-
and 
X
0
) by 
X
X
X
X
X
a
X
a X
X
X
a X
a
X
X
R
Y
B
= ×
+ ×
+ ×
=
×
+ ×
+ ×
= ×
+
×
+ ×
+

+

+

1
1
1
1
1
0
2
0
2
0
We can express this equation set in matrix form as below.
X
X
X
a
a
a
a
X
X
X
R
Y
B
0










=




















+

1
1
1
1
1
2
2
(8.5-1)
X
R

X
Y
and 
X
B
can represent any phase voltage, phase current, line voltage or line current phasors in 
an unbalanced system. The 3
× 
3 matrix in Eqn. 8.5-1 is called the Symmetric Transformation Matrix. 
The inverse equation required for determining sequence components from phase quantities is as below.
X
X
X
a
a
a
a
X
X
X
0
R
Y
B
+











=





















1
3
1
1
1
1
1
2
2
2









(8.5-2)


8.26


SinusoidalSteady-StateinThree-PhaseCircuits
The reader is urged to verify the matrix inversion involved. 
The circuit interpretation of symmetrical components is given in Fig. 8.5-1. Here, an unbalanced 
star-connected voltage source is resolved into its symmetrical components. Symmetrical Components 
theorem assures us that the source in Fig. 8.5-1(a) can be viewed as the composite source in Fig. 
8.5-1(b) in which each source limb contains three sources in series – one each from each sequence 
component set. Further, the superposition principle assures us that applying the source in Fig. 8.5-1(b) 
is the same as applying the three source sets shown in Fig. 8.5-1(c) individually.
Y
B
R
V
0
V

V
+
V
+
V
+
V
0
V
0
V
RN
V
BN
V
YN












+
+
+
+
+
+
+
+
(a)
(b)
(c)
+
+
+
+
N
N
R
V

a
2
V

a
2
a
2
V

a
V

a
a
B
Y
Y
V
0
V
0
V
0



+
+
+
N
R
B
Y
V




+
+
+
N
R
B
Y
V

a
2
V

a
2
V
+



+
+
+
N
R
B
Y
Fig. 8.5-1 
Interpretationofsymmetricalcomponents
8.5.2 
the Zero sequence component
This component needs special attention. We get an expression for zero sequence component from
Eqn. 8.5-2 as 
X
X
X
X
0
1
3
=
+
+
(
).
R
Y
B
Zerosequencecomponentistheaverageofthethreethree-phasequantities.
Line voltages in any three-phase circuit, balanced or unbalanced, will add up to zero by KVL. 
Therefore, line voltages in a three-phase system cannot have a zero sequence content anywhere in the 
system.


SymmetricalComponents

8.27
Line currents in a three-phase three-wire system will have to add up to zero by KCL. Therefore, 
line currents in a three-phase three-wire system cannot have a zero sequence content anywhere in the 
system. 
Phase voltages in a three-phase system need not add up to zero. Hence, phase voltages can have 
zero sequence content.
Line currents in a four-wire system need not add up to zero. The sum 
I
R

I
Y

I
B
can flow through 
the fourth wire (neutral wire) in the return direction. Therefore, three-phase four-wire systems can 
have zero sequence content in their line currents.
8.5.3 
active Power in sequence components
Let the phase voltages across a balanced three-phase load circuit be 
V
RN

V
YN
and 
V
BN
where N is the 
neutral point in the load itself or in its Y-equivalent. Let 
I
R
,
 I
Y
and
 I
B
be the line currents flowing into 
the load. Further, let 
V
0

V

and 
V
-
be the sequence components of phase voltages and 
I
0

I

and 
I
-
be 
the sequence components of line currents.
Then, the total active power that flows into the load,
P
V I
V I
V I
V I
V I
V I
=
+
+
=
+
+
Re[
] Re[
] Re[
]
Re[
*
*
*
*
*
*
RN R
YN Y
BN B
RN R
YN Y
BN B
]]
Let us define four column vectors as below.
V
V
V
V
I
I
I
I
V
V
V
V
ryb
RN
YN
BN
ryb
R
Y
B
0+
0
=










=










=

+

;
;










=











+

;
I
I
I
I
0+
0
Then, the power equation can be expressed as 
P
V I
ryb
t
ryb
=
Re[
]
*
where the superscripts 
t
indicates 
matrix transpose operation and 
*
indicates complex conjugation operation.
Eqn. 8.5-1 expresses the three-phase quantities in terms of its sequence components. It is reproduced 
below.
X
X
X
a
a
a
a
X
X
X
R
Y
B
0










=




















+

1
1
1
1
1
2
2
Using this equation, we write the column vector 
V
ryb
in terms of the column vector 
V
0
+ -
and write 
the column vector 
I
ryb
in terms of the column vector 
I
0
+ -
as below.
V
AV
I
AI
A
a
a
a
a
ryb
ryb
=
=
=










+−
+−
0
0
2
2
1
1
1
1
1
and 
, where 
Then,
P
t
t
=
=
=
+−
+−
+−
+−
Re[
] Re[(
) (
) ] Re[
]
*
*
*
V I
AV
AI
V
A A I
A
ryb ryb
t
t
0
0
0
0
*
t
==










=








1
1
1
1
1
1
1
1
1
1
2
2
2
2
a
a
a
a

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   256   257   258   259   260   261   262   263   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish