Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


partial fraction is the ‘residue at the pole



Download 5,69 Mb.
Pdf ko'rish
bet388/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   384   385   386   387   388   389   390   391   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar


partial fraction is the ‘residue at the pole 
p
i
’. The problem of partial fractions involves the 
determination of these residues. Multiply both sides of Eqn. 13.6-1 by (


p
i
), where 
p
i
is the pole 
at which the residue 
A
i
is to be evaluated. Remember that 
Y
(
s
) will contain (


p
i
) as a factor in the 
denominator. Hence, the multiplication by (


p
i
) results in cancellation of this factor in 
Y
(
s
).
(
) ( )
(
)
(
)
(
)
(
)
(
)
(
)
s p Y s
A s p
s p
A s p
s p
A s p
s p
i
i
i
i
i

=


+


+ +


+
1
1
2
2
2
+


A s p
s p
n
i
n
(
)
(
)
(13.6-2) 
Now we evaluate both sides of Eqn. 13.6-2 at 
s

p
i
to get 
A
s p Y s
i
i
s p
i
= −
=
(
) ( )
. This calculation is 
repeated for 
i

1 to 
n
to complete all the partial fractions.
Each partial fraction of the type 
A
s p
i
i
-
can be recognised as the Laplace transform of 
A e u t
i
p t
i
( )
by 
consulting relevant entry in Table 13.3-1. But, though we know that 
e u t
p t
i
( )
has a Laplace transform 


Method of Partial Fractions for Inverting Laplace Transforms 
13.15
of 
1
s p
i
-
, how do we know that is the only time-function that will have 
1
s p
i
-
as its Laplace transform? 
It is vital to be sure about that if we want to assert that the time-function is 
e u t
p t
i
( )
whenever we see a 
Laplace transform 
1
s p
i
-
. The ‘Theorem of Uniqueness of Laplace transforms’ states that a Laplace 
transform pair is unique. That is, if we have, by some method or other, found out that 
F
(
s
) is the 
Laplace transform of 

(
t
), then this theorem assures us that only 

(
t
) will have this 
F
(
s
) as its Laplace 
transform and no other function will have 
F
(
s
) as its Laplace transform. Therefore, whenever we see 

1
s p
i
-
, we can write 
e u t
p t
i
( )
as its inverse.
Therefore, 
y t
A e
A e
A e
u t
A
s p Y s
p t
p t
n
p t
i
i
s p
n
i
( ) (
) ( )
(
) ( )
=
+
+ +
= −
=
1
2
1
2
where 
.
Case-2 One root of multiplicity 
r
and 
n-r
distinct roots for 
P
(
s
)
In this case the partial fraction expansion is as shown below.
Y s
A
s p
A
s p
A
s p
A
s p
A
s p
r
r
r
r
r
n
n
( )
(
)
(
)
(
) (
)
(
)
=

+

+

+

+


+
+
1
2
1
1
1
(13.6-3) 
The first root 
p
is assumed to repeat 
r
times. It may be real or complex. The remaining (


r
) roots 
are designated as 
p
r

1

p
r

2
,…,
p
n
. That Eqn. 13.6-3 is the partial fraction expansion in this case can 
be shown by an application of Residue Theorem. We take this as a fact and proceed.
The procedure for evaluating the (

-
 r
) residues at the (

-
 r
) non-repeating poles of 
Y
(
s
) is the 
same as in Case-1. Therefore,
A
s p Y s
i
r
n
i
i
s p
i
= −
= +
=
(
) ( )
for
to
1
We multiply both sides of Eqn. 13.6-3 by 
(
)
s p
r
-
for evaluating the 
r
residues at the repeating pole. 
The result is
(
) ( )
(
)
(
)
(
)
(
)
(
s p Y s
A
A s p
A s p
A
s p
s p
A s
r
r
r
r
r
r
n

=
+

+

+


+

+
+
1
2
1
1
1
−−

p
s p
r
n
)
(
)
(13.6-4) 
(
)
s p
r
-
is a factor of denominator of 
Y
(
s
). Therefore, multiplication of 
Y
(
s
) by 
(
)
s p
r
-
will cancel 
this factor in the denominator. Now, evaluating both sides with 
s

p
, we get
A
s p Y s
r
s p
1
= −
=
(
) ( )
Now, we differentiate Eqn. 13.6-4 on both sides with respect to 
s
and substitute 
s

p
to get
A
d s p Y s
ds
r
s p
2
=

=
[(
) ( )]
Similarly, successive differentiation with respect to 
s
and substitution of 
s

p
leads to
A
d
s p Y s
ds
A
d
s p Y s
ds
A
r
r
s p
r
s p
r
3
2
2
4
3
3
1
2
1
=

=

=
=
=
[(
) ( )]
,
!
[(
) ( )]
,
!
dd
s p Y s
ds
r
r
r
s p


=

1
1
[(
) ( )]


13.16
Analysis of Dynamic Circuits by Laplace Transforms
The reader may verify that the partial fraction terms corresponding to the non-repeating roots will 
contribute only zero values in all stages of this successive differentiation.
Once all residues are calculated, Eqn. 13.6-4 is inverted to get the following time-function:
y t
A
t
r
e
A
t
r
e
A e
A e
A
r
pt
r
pt
r
pt
r
p t
r
( )
(
)!
(
)!
=

+

+ +
+
+


+
+
1
1
2
2
1
1
2
1
nn
p t
e
u t
n




( )
We have used the Laplace transform pair 
t e u t
k
s p
k pt
k
( )
!
(
)


+
1
in arriving at this result. This 
Laplace transform pair will be proved in a later section.
example: 13.6-1
Determine (i) the impulse response (ii) the step response and (iii) the zero-state response when 
v
S
(
t


2
e
-
2
t
u
(
t
) for 
v
o
(
t
) in the circuit in Fig. 13.6-1.
Solution
The mesh equation of the circuit is 
3
i
di
dt
v t
v t
s
o
+
=

( )
( )
, where 
i
is the current flowing in the mesh. But 
i
dv t
dt
o
= ×
1
( )
since 
i
flows in the capacitor and 
v
o
(
t
) is the voltage across capacitor. 
Therefore, 
3
2
2
dv t
dt
d v t
dt
v t
v t
o
o
s
o
( )
( )
( )
( )
+
=

. Therefore, the 
differential equation governing the output voltage is 
d v t
dt
dv t
dt
v t
v t
o
o
o
s
2
2
3
( )
( )
( )
( )
+
+
=
.
The System Function 
H s
V s
V s
s
s
o
s
( )
( )
( )
=
=
+ +
1
3
1
2
.
The roots of denominator polynomial are –2.618 and –0.382. The factors of the denominator 
polynomial are (
s

2.618) and (s

0.382).
(i) The impulse response of a linear time-invariant circuit is the same as the inverse transform of 
its System Function. 

=
=
+
+
h t
H(s)
s
s
( )
(
.
)(
.
)
Inverse of 
Inverse of
1
2 618
0 382
1
2 618
0 382
2 618
0 382
1
2
(
.
)(
.
)
(
.
) (
.
)
s
s
A
s
A
s
+
+
=
+
+
+
A
s
s
s
s
s
s
1
2 618
2 61
2 618
1
2 618
0 382
1
0 382
= +
×
+
+
=
+
=−
=−
(
.
)
(
.
)(
.
)
(
.
)
.
. 88
1
0 382
0 4472
0 382
1
2 618
0 382
1
2 6
= −
= +
×
+
+
=
+
=−
.
(
.
)
(
.
)(
.
)
(
.
.
A
s
s
s
s
s
118
0 4472
0 382
)
.
.
s
=−
=
Fig. 13.6-1 
Circuit for 
Example: 13.6-1 
v
S
(
t
)
v
o
(
t
)


1 H
1 F

+

+


Method of Partial Fractions for Inverting Laplace Transforms 
13.17

+
+
=

+
+
+
1
2 618
0 382
0 4472
2 618
0 4472
0 382
(
.
)(
.
)
.
(
.
)
.
(
.
)
s
s
s
s

=



h t
e
e
u t
t
t
( )
.
(
) ( )
.
.
0 4472
0 382
2 618
V
(ii)
v
S
(
t


u
(
t


V
S
(
s


1/
s
. Therefore the Laplace transform of step response 

1
2 618
0 382
s s
s
(
.
)(
.
)
.
+
+
Expressing this in partial fractions,
1
2 618
0 382
2 618
0 382
1
2
3
s s
s
A
s
A
s
A
s
(
.
)(
.
)
(
.
) (
.
)
+
+
=
+
+
+
+
A
s
s s
s
A
s
s
s
1
0
2
1
2 618
0 382
1
2 618 0 382
1
2 618
1
= ×
+
+
=
×
=
= +
×
=
(
.
)(
.
)
.
.
(
.
)
((
.
)(
.
)
.
.
.
.
s
s
s
+
+
=

× −
=
=−
2 618
0 382
1
2 618
2 236
0 1708
2 618
A
s
s s
s
s
3
0 382
0 382
1
2 618
0 382
1
0 382 2 236
1
= +
×
+
+
=

×
= −
=−
(
.
)
(
.
)(
.
)
.
.
.
..1708

+
+
= +
+
+

+
1
2 618
0 382
1
0 1708
2 618
1 1708
0 382
s s
s
s
s
s
(
.
)(
.
)
.
(
.
)
.
(
.
)
\
Step response of 
v
o
(
t


(
.
.
) ( )
.
.
1 0 1708
1 1708
2 618
0 382
+



e
e
u t
t
t
V
(iii)
v
S
(
t


2
e
-
2
t
u
(
t


V
S
(
s


2/(
s

2). The Laplace transform of zero-state response is given by 
product of System Function and Laplace transform of input function.

=
+
+
+
V s
s
s
s
o
( )
(
)(
.
)(
.
)
2
2
2 618
0 382
Expressing this in partial fractions,
V s
s
s
s
A
s
A
s
A
s
o
( )
(
)(
.
)(
.
)
(
) (
.
) (
.
=
+
+
+
=
+
+
+
+
+
2
2
2 618
0 382
2
2 618
0
1
2
3
3382)
A
s
s
s
s
A
s
1
2
2
2
2
2
2 618
0 382
2
0 618
1 618
2
= + ×
+
+
+
=
× −
= −
=
=−
(
)
(
)(
.
)(
.
)
.
.
(
ss
s
s
s
s
+
×
+
+
+
=

× −
=
=−
2 618
2
2
2 618
0 382
2
0 618
2 236
2 618
.
)
(
)(
.
)(
.
)
.
.
.
11 4474
.
A
s
s
s
s
s
3
0 382
0 382
2
2
2 618
0 382
2
1 618 2 236
= +
×
+
+
+
=
×
=−
(
.
)
(
)(
.
)(
.
)
.
.
.
==
0 5528
.

+
+
+
=

+
+
+
+
1
2
2 618
0 382
2
2
1 4474
2 618
0 5528
(
)(
.
)(
.
)
(
)
.
(
.
)
.
(
s
s
s
s
s
s
++
0 382
.
)
\
v
o
(
t


(
.
.
) ( )
.
.

+
+



2
1 4474
0 5528
2
2 618
0 382
e
e
e
u t
t
t
t
V


13.18
Analysis of Dynamic Circuits by Laplace Transforms

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   384   385   386   387   388   389   390   391   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish