Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  poles and Zeros of system functIon and excItatIon functIon



Download 5,69 Mb.
Pdf ko'rish
bet386/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   382   383   384   385   386   387   388   389   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

13.5 
poles and Zeros of system functIon and excItatIon functIon
H
(
s
) is the System Function, 
X
(
s
) is the excitation function and 
Y
(
s
) is the output function referred to 
in this section.
We observed that 
H s
Y
s
X s
b s
b
s
b s b
s
a s
a s a
zsr
m
m
m
m
o
n
n
n
( )
( )
( )
=
=
+
+ +
+
+
+ +
+




1
1
1
1
1
1
oo
is a ratio of rational polynomials 
in complex frequency variable 
s
. Further, we observe from Table 13.3-1 that the excitation functions 
corresponding to commonly employed input source functions are also in the form of ratio of rational 
polynomials in 
s
. Thus the output function also turns out to be a ratio of rational polynomials in 
s

Therefore, we can write
H s
Q s
P s
X s
Q s
P s
Y s
Q s
P s
Q s
P s
e
e
e
e
( )
( )
( )
, ( )
( )
( )
( )
( )
( )
( )
( )
=
=
=
×
and
where 
Q
(
s
) is an 
m
th
-order polynomial on 
s
and 
P
(
s
) is an 
n
th
-order polynomial on 
s
. They are the numerator polynomial and denominator polynomial 
of System Function, respectively. Similarly
Q
e
(
s
) and 
P
e
(
s
) are the numerator and denominator 
polynomials on 
s
for the excitation function.
Let the 
n
roots of 
P
(
s
) be represented as 
p
1

p
2
,…, 
p
n
and the 
m
roots
 
of 
Q
(
s
) be represented as 
z
1

z
2
,…, 
z
m.
These roots can be complex in general. 
p
1

p
2
,…, 
p
n
are the 
n
values of complex frequency 

at which the System Function goes to infinity. They are defined as 
poles
of System Function. 
z
1

z
2
,…, 
z
m
are the 
m
values of complex frequency 
s
at which the System Function goes to zero value. 
They are defined as the 
zeros
of System Function.


13.12
Analysis of Dynamic Circuits by Laplace Transforms
Similarly the values of 
s
at which 
X
(
s
) goes to infinity are called the 
excitation poles
and the values 
of 
s
at which 
X
(
s
) goes to zero are called the 
excitation zeros
. They are the same as roots of 
P
e
(
s
) and 
Q
e
(
s
), respectively.
Obviously, the System Function poles and excitation function poles together will form the poles 
of output function. Similarly, the System Function zeros and excitation function zeros together will 
form the output function zeros. These statements assume that no pole-zero cancellation takes place.
A diagram that shows the complex signal plane
i.e.,
the 
s
-plane, with all poles of a Laplace 
transform marked by ‘
×
’ symbol and all zeros marked by ‘o’ symbol is called the 
pole-zero plot
of that Laplace transform. Some poles and zeros may have multiplicity greater than 1. In that 
case, the multiplicity is marked near the corresponding pole or zero in the format ‘
r

k
’ where 

indicates the multiplicity and 
k
is the actual value of multiplicity. The default value of 
r

1 is not 
marked.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   382   383   384   385   386   387   388   389   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish