Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


Partial inversion integral for step function for



Download 5,69 Mb.
Pdf ko'rish
bet385/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   381   382   383   384   385   386   387   388   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar


Partial inversion integral for step function for 
s


1 and (a) 
w
0

10 (b) 
w
0

20 
(c) 
w
0

50 
13.3 
laplace transforms of some common rIght-sIded functIons
Integral of sum of two functions is sum of integrals of each function. Thus, Laplace transformation is 
a linear operation. If 
v
1
(
t
) and 
v
2
(
t
) are two right-sided functions and 
a
1
and 
a

are two real numbers, 
then, 
a v t
a v t
a V s
a V s
1 1
2 2
1 1
2 2
( )
( )
( )
( )
+

+
is a Laplace transform pair. This is called 
Property of 
Linearity of Laplace transforms. 
Now we work out the
 
Laplace transforms for many commonly 
used right-sided functions using the defining integral and property of linearity.
Let 
v t
e u t
s t
o
( )
( )
=
be a right-sided complex exponential function with a complex frequency of 
s
o

Then,
V s
e e dt
e
dt
e
s s
s
s t
st
s s t
s s t
o
o
o
o
( )
(
)
(
(
)
(
)
=
=
=

=





− −

− −



0
0
0
1
−−
>
s
s
o
o
)
Re( )
with ROC
s
Therefore, 
e u t
s s
s t
o
o
( )
/ (
)


1
is a Laplace transform pair with ROC Re(
s
) > Re(
s
o
).
The special case of 
v
(
t


u
(
t
) is covered by this transform pair with 
s
o

0.
Therefore, 
u t
s
( )
/

1 is a Laplace transform pair with ROC Re(
s
) > 0.
The special case of 
v
(
t


cos
w
o
t
u
(
t
) is covered by expressing 
v
(
t
) as 

(
) /
e
e
j
t
j
t
o
o
w
w
+

2 by 
employing Euler’s formula and then applying property of linearity of Laplace transforms.

=

+
+
=
+
V s
s
j
s
j
s
s
o
o
o
( )
.
.
0 5
0 5
2
2
w
w
w
Therefore, cos
( )
w
w
o
o
t u t
s
s

+
2
2
is a Laplace transform pair with ROC Re(
s
) > 0.


13.8
Analysis of Dynamic Circuits by Laplace Transforms
Similarly, sin
( )
w
w
w
o
o
o
t u t
s

+
2
2
is a Laplace transform pair with ROC Re(
s
) > 0.
Consider 
v
(
t


e
-
a
t
cos
b
t
u
(
t
). This can be expressed as 

[
] /
(
)
(
)
e
e
j
t
j
t
− +
− −
+
a
b
a
b
2 by Euler’s 
formula. Then,

=
+ −
+
+ +
=
+
+
+
V s
s
j
s
j
s
s
( )
.
.
(
)
(
)
0 5
0 5
2
2
a
b
a
b
a
a
b
Therefore, 
e
t u t
s
s
t


+
+
+
a
b
a
a
b
cos
( )
(
)
(
)
2
2
is a Laplace transform pair with ROC of Re(
s
) > 
-
a

Similarly, 
e
t u t
s
t


+
+
a
b
b
a
b
sin
( )
(
)
2
2
is a Laplace transform pair with ROC of Re(
s
) > 
-
a
.
Now consider 
v t
e
e
s
u t
s
s t
s t
o
o
( )
( )
(
)
=

+∆

The Laplace transform of this function can be found from the defining integral as 
V s
s s s
s
s s
s s
s s s
o
o
o
o
( )
(
)(
)
=
− −
+






 =
− −

1
1
1
1



Now we send 
v
(
t
) to a limit as 
D
s

0.
lim ( )
lim
( )
lim
(
)
(
)






s
s
s
s t
s t
s
s
s t
v t
e
e
s
u t
e
e
o
o
o


+

+
=

=

0
0
0
ss t
s t
o
o
s
u t
te u t





=
( )
( )
Therefore, Laplace transform of 
te u t
s t
o
( )

lim
(
)(
) (
)


s
o
o
o
s s
s s s
s s

− −

=

0
2
1
1
Therefore, 
te u t
s s
s t
o
o
( )
/ (
)


1
2
is a Laplace transform pair with ROC Re(
s
) > Re(
s
o
).
The special case of 
v
(
t


t
u
(
t
) is covered by this transform pair with 
s
o

0.
Therefore, 
tu t
s
( )
/

1
2
is a Laplace transform pair with ROC Re(
s
) > 0.
And finally, we consider 
v
(
t


d
(
t
). 
V s
t e dt
t e dt
st
( )
( )
( )
=
=
=




+


d
d
0
0
0
0
1 . Thus, 
d
( )
t

1 is a 
Laplace transform pair with ROC of entire 
s
-plane. It requires all complex exponential functions with 
equal intensity to synthesise an impulse function in time-domain.
These commonly used Laplace transform pairs are listed in Table 13.3-1. Some of them have been 
derived in this section. Others will be taken up later.


The 
s
-Domain System Function 
H 
(
s
) 
13.9
table 13.3-1
Basic Laplace Transform Pairs
Time-Function
Laplace Transform
Region of Convergence
d
(
t

1
Entire 
s-
plane
u
(
t

1
s
Re(
s
) > 0
e u t
s t
o
( )
1
s s
o
-
Re(
s
) > Re(
s
o
)
e
u t
j
t
o
w
( )
1
s
j
o
-
w
Re(
s
) > 0
e u t
t
-
a
( )
1
s
+
a
Re(
s
) > 
-
a
cos
( )
w
o
t u t
s
s
o
2
2
+
w
Re(
s
) > 0
sin
( )
w
o
t u t
w
w
o
o
s
2
2
+
Re(
s
) > 0
e
t u t
t
-
a
b
cos
( )
(
)
(
)
s
s
+
+
+
a
a
b
2
2
Re(
s
) > 
-
a
e
t u t
t
-
a
b
sin
( )
b
a
b
(
)
s
+
+
2
2
Re(
s
) > 
-
a
tu t
( )
1
2
s
Re(
s
) > 0
t u t n
n
( ),
, ,...
=
1 2
n
s
n
!
+
1
Re(
s
) > 0
te u t
s t
o
( )
1
2
(
)
s s
o
-
Re(
s
) > Re(
s
o
)
t e u t n
n s t
o
( ),
, ,....
=
1 2
n
s s
o
n
!
(
)

+
1
Re(
s
) > Re(
s
o
)
13.4 
the 
s
-domaIn system functIon 
H
(
s
)
We saw in Section 13.1 that when an input 
e
st
is applied to a linear time-invariant circuit described by 
an 
n
th
-order differential equation 
d y
dt
a
d
y
dt
a
dy
dt
a y
b
d x
dt
b
d
x
dt
n
n
n
n
n
m
m
m
m
m
m
+
+ +
+
=
+






1
1
1
1
0
1
1
1
++ +
+
b
dx
dt
b x
1
0


13.10
Analysis of Dynamic Circuits by Laplace Transforms
the response is given by 
H
(
s
)
e
st
where
H s
Y s
X s
b s
b
s
b s b
s
a s
a s a
m
m
m
m
o
n
n
n
o
( )
( )
( )
=
=
+
+ +
+
+
+ +
+




1
1
1
1
1
1
H
(
s
) in this context is the ratio of complex amplitude of forced response component in output to 
the complex amplitude of input complex exponential function with a complex frequency of 
s
. There is 
only forced response in this context and forced response itself is the total response.
In Section 13.2, we observed that a right-sided function 
x
(
t
) can be expressed as a sum of infinitely 
many complex exponential functions of frequency between 
s

j

to 
s

j

with the line Re(
s


s
falling within the ROC of Laplace transform of 
x
(
t
). We combine these two facts along with 
superposition principle to arrive at the zero-state response of a linear time-invariant circuit to a right-
sided input function.
Consider a particular value of complex frequency 
s
and a small band of complex frequency 
D
s
centered on it. This band contributes complex exponential functions of frequencies between 
(


0.5
D
s
) and (
s

0.5
D
s
). For sufficiently small 
D
s
, we may take all these complex exponential 
functions to be evolving approximately at the centre frequency of the band, 
i.e.,
at 
s
itself. In that case, 
all the infinitesimal contributions coming from this band may be consolidated into a signal 

X
(
s

D
s
e
st
.
This single complex frequency component with complex amplitude of 
X
(
s

D
s
will produce a total 
response component of 
H
(
s

X
(
s

D
s
e
st
in the output. We get the zero-state response of the circuit by 
adding all such contributions over the line Re(
s


s
falling within the ROC of 
X
(
s
) and sending the 
sum to a limit by making 
D
s

0. The result will be the following integral.

=
− ∞
+ ∞

y t
H s X s e ds
j
j
st
( )
( ) ( )
s
s
(13.4-1) 
Compare Eqn. 13.4-1 with the synthesis equation of Laplace transform given by Eqn. 13.2-2. It 
is evident that Eqn. 13.4-1 is the synthesis equation of the Laplace transform 
H
(
s
)
X
(
s
). But then, a 
synthesis equation which returns 
y
(
t
) must be synthesising it from the Laplace transform 
Y
(
s
) of the 
time-function 
y
(
t
). Therefore, 
Y
(
s


H
(
s
)
X
(
s
). This important result requires restatement.
The Laplace transform of zero-state response 

Laplace transform of input source 
function 
×
Ratio of complex amplitude of forced response to the complex amplitude of 
input complex exponential function at a complex frequency of 
s
.
Now comes a definition. 
The ratio of Laplace transform of zero-state response to Laplace transform 
of input source function is defined as the s-domain System Function.
And these two are seen to be the 
same.
\
The 
s
-domain System Function, 
H s
Y
s
X s
b s
b
s
b s b
s
a s
a s a
m
m
m
m
o
n
n
n
( )
( )
( )
=
=
+
+ +
+
+
+ +
+




zsr
1
1
1
1
1
1
oo
(13.4-2) 
Note carefully that System Function is independent of initial conditions in the circuit since it is the 
zero-state response to a right-sided input that is employed in its definition. This function is also called 

Transfer Function
when both 
x
and 
y
are similar quantities, 
i.e.,
when 
x
and 
y
are voltages or 
x
and 
y
are currents and is denoted by 
T
(
s
). It is called an 
Input Impedance Function
and is denoted by 
Z
i
(
s



Poles and Zeros of System Function and Excitation Function 
13.11
if 

is the voltage across a terminal pair and 
x
is the current entering the positive terminal. It is called 
an 
Input Admittance Function
and is denoted by 
Y
i
(
s
) if 

is the current into a terminal pair and 
x
is 
the voltage across the terminal pair. These two, 
i.e.,
Z
i
(
s
) and 
Y
i
(
s
), together are at times referred to as 
immittance functions
.
If the quantities 
x
and 
y
are voltage–current or current–voltage pair and they refer to different 
terminal pairs in the circuit, we call the 
s
-domain System Function a 
Transfer Impedance Function
or 
Transfer Admittance Function
, as the case may be. They are represented by 
Z
m
(
s
) and 
Y
m
(
s
), respectively.
We have an expression for 
H
(
s
) as a ratio of rational polynomials in 
s
in Eqn. 13.4-2. Rational 
polynomials are polynomials containing only integer powers of the independent variable. However, 
there is another more interesting interpretation possible for 
H
(
s
).
Let us try to find the impulse response of the circuit by this transform technique. We remember that 
‘impulse response’ means ‘zero-state response to unit impulse input’ by definition. Hence, we can use 
the System Function to arrive at the Laplace transform of impulse response as 
H
(
s
)
X
(
s
). But 
x
(
t


d
(
t

and therefore 
X
(
s


1. Hence, for a linear time-invariant circuit, the following statement holds.
Laplace transform of impulse response 

s-
domain System Function, and, Impulse 
response 

inverse Laplace transform of 
s
-domain system function This result was 
anticipated in naming the System Function as 
H 
(
s
).
Once the System Function and Laplace transform of input source function are known, one can 
obtain the Laplace transform of zero-state response by inverting the product of input transform and 
System Function. We will take up the task of inverting Laplace transforms in later sections.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   381   382   383   384   385   386   387   388   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish