Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  frequency-shifting theorem



Download 5,69 Mb.
Pdf ko'rish
bet390/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   386   387   388   389   390   391   392   393   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

13.7.2 
frequency-shifting theorem
If 
v 
(
t
) 

f 
(
t
) 
u 
(
t
) has a Laplace transform 
V 
(
s
), then, 
v
d 
(
t
) 

v t e
s t
o
( )
has a Laplace 
transform 
V s
V s s
d
o
( )
(
).
=

This theorem follows from the defining equation 
for Laplace transforms.
V s
v t e dt
v t e e dt
v t e
d
d
st
s t
st
s s t
o
o
( )
( )
( )
( )
(
)
=
=
==




− −






0
0
0
∫∫
=

dt V s s
o
(
)
13.7.3 
time-differentiation theorem
If 
v 
(
t
) 

f 
(
t
) 
u 
(
t
) has a Laplace transform 
V 
(
s
), then, 
v
d 
(
t
) 

dv t
dt
( )
has a Laplace transform 
V s
sV s
v
d
( )
( )
( ).
=


0
Note that 
dv t
dt
df t
dt
u t
( )
( )
( ).

×
V s
dv t
dt
e dt
d v t e
dt
sv t e
dv t
dt
e
d
st
st
st
s
( )
( )
[ ( )
]
( )
( )
=
= −
+







0
tt
st
st
st
d
st
dv t
dt
e
d v t e
dt
sv t e
V s
dv t
dt
e

=
+

=





( )
[ ( )
]
( )
( )
( )
0










=
+
=
+



dt s
v t e dt
d v t e
dt
dt
sV s
v t e
st
st
st
( )
[ ( )
]
( )
( )
0
0
0


The function 
v t e
st
( )
-
will be a decaying function for any value of 
s
in the ROC of 
V
(
s
). Otherwise, 
the Laplace transform will not converge for that value of 
s
. Therefore, it will go to zero as 
t


.

=


V s
sV s
v
d
( )
( )
( )
0
Now, by using mathematical induction, we may show that,
Laplace transform of 
d v t
dt
s V s
sv
dv t
dt
2
2
2
0
0
( )
( )
( )
( )
(
)
=




Fig. 13.7-2 
Output response and its 
components in the circuit 
in Example: 13.7-1 
5
2
4
–5
10
(V)
v
S
(
t
)
v
(
t
)
(
s
)
Time


13.22
Analysis of Dynamic Circuits by Laplace Transforms
and that, in general, Laplace transform of 
d v t
dt
s V s
s
v
s
dv t
dt
d
v t
dt
n
n
n
n
n
n
n
( )
( )
( )
( )
( )
(
)
=










1
2
0
1
0
11
0
(
)

13.7.4 
time-Integration theorem
If 
v 
(
t
) 

f 
(
t
) 
u 
(
t
) has a Laplace transform 
V 
(
s
), then, 
v
i

(
t
) 

v t dt
t
( )
0


has a Laplace transform 
V s
V s
s
i
( )
( )
.
=
V s
v t dt e dt
d
v t dt e
dt
v t e
s
i
t
st
t
st
st
( )
( )
( )
( )
=
(
)
(
)
=











0
0
0
vv t dt e
V s
v t dt e dt
s
v t e
t
st
i
t
st
st
( )
( )
( )
( )
0
0
0
0
1






(
)

=
(
)
=




−−












+
(
)
=
+
dt
s
d
v t dt e
dt
dt
s
v t e dt
s
v t
t
st
st
1
1
1
0
0
0
( )
( )
( )
ddt e
t
st
0
0



(
)


The function 
v
(
t
) is stated to possess a Laplace transform. This implies that there is an exponential 
function 
Me
a
 
t
with some positive value of 
M
and some real value for 
a
such that |
v
(
t
)| < 
Me
a
t

Otherwise, 
v
(
t
) would not have a Laplace transform. Therefore, the function 
v t dt
t
( )
0


will satisfy the 
inequality |
v t dt
t
( )
0


| < |
 M/
a
(
e
a
t
– 1)| and therefore is bounded. Therefore, the Laplace transform of 
v t dt
t
( )
0


will exist. That is, it is possible to select a value for 
s
such that the function 
v t dt
t
( )
0


× 
e
-
st
is 
a decaying function. For such an 
s

i.e.,
for a value of 
s
in the ROC of Laplace transform of 
v t dt
t
( ) ,
0


the value of 
v t dt e
t
st
( )
0


(
)

will go to zero as 
t


. And, the value of 
v t dt e
t
st
( )
0


(
)

at 
t

0
-
is zero 
in any case.

=
=




V s
s
v t e dt
V s
s
i
st
( )
( )
( )
1
0
example: 13.7-2
Find the Laplace transform of 
t
n
u
(
t
).
Solution
The function 
tu
(
t
) is the integral of 
u
(
t
). Therefore, 
tu t
s
( )
/

1
2
. Now the function 
t
2
u
(
t
) is 
2 times the integral of 
tu
(
t
). Therefore, 
t u t
s
2
3
2
( )
/

. Proceeding similarly to the power 
n
, we get, 
t u t
n s
n
n
( )
!/

+
1
.


Some Theorems on Laplace Transforms 
13.23
13.7.5 
s
-domain-differentiation theorem
If 
v 
(
t
) 

f 
(
t
) 
u 
(
t
) has a Laplace transform 
V 
(
s
), then, 
-
tv 
(
t
) has a Laplace transform 
dV s
ds
( )
.
We show this by determining the Laplace transform of 
-
tv
(
t
) from the defining integral.

=









tv t e dt
v t te
dt
st
st
0
0
( )
( )[
]
We have repeatedly used the limit 
lim
(
)



a
a
a
a
a
a

+

=
0
e
e
te
t
t
t
many times before. We use this limit 
again with 
a
= -
s
within the integral.


=















− +



tv t e dt
v t
e
e
s
d
st
s
s
s t
st
0
0
0
( )
( ) lim
(
)



tt
Since the limiting operation is on 
s
and integration is on 
t
we may interchange the order of these 
two operations.


=















− +



tv t e dt
v t
e
e
s
d
st
s
s
s t
st
0
0 0
( )
lim
( )
(
)



tt
s
v t e
e
dt
s
v t e
s
s
s t
st
s
=



=

− +






lim
( )
lim
( )
(
)





0
0
0
1
1
((
)
( )
lim
(
)
( )
l
s
s t
st
s
dt
v t e
dt
s
V s
s
V s
+









(
)
=
+

(
)
=




0
0
0
1
iim
(
)
( )
( )



s
V s
s
V s
s
dV s
ds

+

=
0
13.7.6 
s
-domain-Integration theorem
If 
v 
(
t
) 

f 
(
t
) 
u 
(
t
) has a Laplace transform 
V 
(
s
) and 
lim
( )
t
v t
t

0
is finite, then, 
v t
t
( )
has a Laplace 
transform 
V s ds
s
( ) .


V s ds
v t e dt ds
v t
e ds
s
st
s
st
s
( )
( )
( )











=




=






0
0
∫∫

=








−∞


dt
v t
e
e
t
dt
st
t
( )
0
If the integration 
V s ds
s
( )


is carried out in the right-half of 
s
-plane (ROC of right-sided functions 
will have at least a part of right-half 
s
-plane in it), then 
e
t
−∞
in the last step in the equation above will 
vanish. Then, 
V s ds
v t
t
e
dt
v t
t
s
st
( )
( )
( )





=
=

0
Laplace Transform of 
.


13.24
Analysis of Dynamic Circuits by Laplace Transforms

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   386   387   388   389   390   391   392   393   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish